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Two purposes

Codes are used for designing and used for tuning. Traditionally, emphasis was
on former; little involvement of the beam physicists to use the actual model
while commissioning was taking place. Why? Was it because there was
assumed to be too many divergences between idealized model and real life?
No; the basic physics is solid and simple. Real fields (on a grid) often are not
needed as accuracy comes from adhering to conservation laws (canonical
approach). Example: With axial symmetry, for linear description, surprisingly
few points of on-axis potential are needed.

Generally what happened was that the theoretical settings were passed on to
those tuning, and when those did not work, there was a lot of knobbing
around. But what should happen is that the deviations between model and
operation should be investigated and the model refined, so that it continues to
be useful during operation.
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Why envelope codes?

Why not derive accurate field maps, and shoot particles through them? Need
many particles, say 106. How many field values? Can make accurate model,
but:

Often in searching through design parameter space, use a million runs. One
cannot contemplate a trillion runs through a beamline just to solve this simple
optimization problem. Not a good approach.
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About Models

It is a fallacy that the most complete models are the most useful.

Basic example: neither the linear, nor anything up to including third order
depend strongly upon the shape of a quadrupole’s fringe field; not even on the
width of the fringe field. You would not know why this is, from constructing
many quads with different field clamps, or from running countless cases with
varying Enge coefficients.
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Reduced Models→ Speed

In many cases, it is sufficient to know the beam size (in all 6 dimensions xi for
i = 1...6). The general case is 6 sizes, 15 correlations, IOW, all second
moments 〈xixj〉. There would be 21 equations of motion of these moments
rather than the 6N equations where N = 106. So we gain five orders of
magnitude in computational speed.

This was already capitalized in very early days (1960’s) when computers were
slow, and resulted in Brown’s formulation of the σ matrix, and the original
envelope code TRANSPORT.
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Closed-Form Matrix Methods

For constant linear restoring force, matrix optics can be written in closed
(matrix) form. This is the basis of early codes such as TRANSPORT. But
piecewise constant fields do not satisfy Maxwell equations.

Thinking so, we make the same fundamental mistake as in this cheesy DOS
game of mini-Putt. Can you spot the problem?
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Interestingly, though, the perturbation from making strength a continuous
function appears mostly in next higher order (cubic in the case of
quadrupoles). This is called “adding fringe fields” (even COSY-∞ does it) as if
there’s a choice. In fact elements without fringe fields are non-physical.
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First order pitfall

In first order there is also an effect, that gets larger the shorter the element.

Consider that a decoupled element has a transfer matrix
(
a b
c d

)
. Since there

are only four elements and determinant is 1, only 3 are independent. Further,
by time reverse symmetry, a = d. Thus there are only 2. What are they?

Effective length and effective strength, and fringe field does not seem to
matter.

Anybody know what the problem is with this description?
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Effective length 6= insertion length. Moreover, effective length for x motion not
the same as for y motion. Thus there are in fact four parameters; the
remaining two can be called “fringe field integrals” (Wollnik, Irwin, ...).
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Higher order undesirable effects
Since we want to design aberration-free, how can we do this with a purely
linear code?

In the beginning... Slow computers, costly integration meant that analytic
formulas were highly desirable. And when these were more-or-less known for
the linear part, the next effort was to find the nonlinear parts. And they turned
out to be very UGLY.
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...and this is only second order. The quadrupole aberrations start at third
order.

How confident can we be that all elements are properly coded?
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A better solution

Brilliantly, Martin Berz devised an automatic differentiation scheme that could
get these higher order matrix elements to any order. They were costly to
calculate though, so for example optimizing a beamline including quad lengths
and separations proves to be impractical. Moreover, one had to give precisely
the six Enge coefficients for any quads. (And they are not known since not yet
built.) But there is an easier way. And the hint is that hardly anyone needs to
change the default Enge function built into COSY-∞ for quads. (It happens to
be the PETRA ring quads.)

AR. Baartman, TRIUMF – 2023 IAS 15



A pragmatic solution

Usually, we only need to understand higher order well enough to design them
to be negligible. The exceptions are the extreme conditions, for example as in
a High Resolution Spectrometers and the repeated effects of higher order in
storage rings. But for beam transport lines since we want them to be
“sufficiently small”, approximate upper limits for the aberrations arising from
individual beamline elements, are sufficient. We just calculate aberrations
element by element and minimize. We don’t bother to track nonlinear effects.
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Let us first determine what is meant by
“sufficiently small”

Figure 1: Phase space ellipse with cubic distortion.
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The key parameter is of course the emittance. A higher order distortion is
shown in Fig. 1. This may be a cubic (as is common for focusing devices
where the fields are odd functions of transverse coordinates1) or parabolic in
the case of the dominant error from dipoles.

Include misalignments: The order of the dominant effect is not particularly
important for our purposes; only the location of the “edge” of the desired
emittance matters. If desired, the expected misalignment can be included in
the “size”. A high quality beam may have negligible emittance growth if it is
aligned to the beamline symmetry axis, but not so when misaligned.

Let us call the integrated higher order error ∆x′. Fig. 1 makes clear that this x′

is to be compared not with the beam divergence, but with the local divergence
width ε/x0, which may be significantly smaller: the two versions agree only at
a waist.

1Early versions of TRANSPORT extended it to only second order and so missed this effect entirely.
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Key formula

The effective fractional growth in emittance is

∆ε

ε
∼ ∆x′ x0

ε
, (1)

and we want this to be small compared to 1. How small depends upon
context: typically 1% is sufficient but clearly if there are thousands of
elements, we would want this to be much smaller than 1%. Most often, the
emittance growth is dominated by one or two focusing elements; the ones that
create the final focus.
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Optimization strategy

In any beamline design, there are many constraints besides minimizing
emittance growth. The main constraint is to achieve a desired match or ‘Twiss’
parameters at the final focus. This is often done by calculating the mismatch
factor, which also constitutes an emittance growth. Clearly, it matters not
whether growth comes from mismatch or from aberrations so these two are
simply added in quadrature and the sum is minimized. This is the whole “trick”
used in our code TRANSOPTR.

What was wrong with the TRANSPORT approach?

But it remains to find ∆x′. Surprisingly though, simple formulas can be found
for any of the standard beamline elements.
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Transport Elements

Solenoid third order aberration depends on aperture, or more specifically,
fringe field “hardness”. Quadrupole third order aberrations do not depend on
fringe field, but fifth order does. Dipole bender second order aberrations do
not depend on fringe field hardness, but third order does.
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Solenoid
It is useful to know that the magnetic field from a solenoid is completely given
by the following expansions:

Bz(r, z) =

∞∑
n=0

(−1)n

n!2

(
r

2

)2n( d

dz

)2n

Bz(0, z) (2)

Br(r, z) =

∞∑
n=0

(−1)n+1

(n+ 1)!n!

(
r

2

)2n+1( d

dz

)2n+1

Bz(0, z) (3)

These follow directly from Maxwell’s equations plus the symmetry.

For small r, we have:

Bz = B0 −
r2

4
B′′ (4)

Br = −r
2
B′ +

r3

16
B′′′ (5)
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(B0(z) is the on axis field Bz(0, z), and B′ etc. are derivatives of B0(z).)

To the same order,

B2
z = B2

0 −
r2

2
B0B

′′ (6)

The equation of motion through the solenoid has radial part:

r′′ +KB2
z r = 0 (7)

(K is a constant containing the magnetic rigidity: K = 1
(2Bρ)2.)

Expanding to cubic force order gives

r′′ +K

(
B2 r − BB

′′

2
r3

)
= 0 (8)
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The nonlinear term gives an r′ error, denoted by ∆r′,

∆r′ =
K

2

∫
r3BB′′dz =

K

2
r3

∫
BB′′dz (thin lens approx.)

= −K
2
r3

∫
B′2dz (9)

Thus we see that optimizing a solenoid by minimizing the off-axis focal
deviation is exactly the same as minimizing the mean-squared value of B′.

AR. Baartman, TRIUMF – 2023 IAS 24



Clearly, the integral (9) depends on the form of the fringe field. However, if we
can characterize it as having an effective width w, then

∆r′ ∼ r3

fwL
=

r3

4wρ2
, (10)

as the focal length for solenoids is given by 1
f =

∫
B2dz

(2Bρ)2 = L
4ρ2. Usually, if no

special shaping is done and there is a uniform number of turns per unit length,
w ∼ 3a where a is aperture radius.

Roughly speaking,
∆ε

ε
=

∆r′

ε/r̂
∼ r̂4

εfwL
(11)
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Einzel Lens

Figure 2: Potential function plot (r, z) of 3-aperture einzel lens, where apertures
are at z = −1, 0, 1 in units of aperture radius.

As with solenoids, the axial symmetry of einzel or aperture lenses means that
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the field in all space can be determined if the on-axis field is known.

One can find the focal length of the single aperture by using eqn. 5 as
Er = −r2E

′ and integrating in the thin lens limit:

∆r′ =

∫
r′′dz =

∫
1

v2

d2r

dt2
dz =

∫
q

mv2
Erdz ≈ −

r

4V0
E1, (12)

where qV0 = mv2

2 and V0 is the voltage through which the beam particle of
charge q has been accelerated. This a focal length f :

1

f
=
E1

4V0
. (13)

Clearly, this only applies in the non-relativistic regime: einzel lens are not used
at relativistic energies.

AR. Baartman, TRIUMF – 2023 IAS 27



In spite of there being no closed-form expression for focal length f , we can
still write the scaling for higher order effects, in terms of f . To compare with
other lenses, we write in terms of the total length L = 2l. From COSY, we find

∆r′ ≈ r3

ηfaL
, (14)

where η varies according to aspect ratio: for L� a, η = 3/2, but for example
for L = a, η = 1/2. Unsurprisingly, the aberrations scale similarly to solenoids
as (faL)−1, but for einzel lenses the proportionality factor is 2 to 6 times
worse.

AR. Baartman, TRIUMF – 2023 IAS 28



Quadrupole

Like solenoids, the lowest order aberration is cubic or third order. (BTW,
please don’t refer to it as ‘octupole’.) But unlike solenoids, this aberration
cannot be reduced by shaping the field strength function i.e. softening the
edges. It turns out that the third order aberration is independent of fringe field
shape or extent. (This is not however true of fifth and higher order; those in
fact are reduced by softening the edges.)

z

k(z)

k’’(z)

k’(z)
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The electrostatic quadrupole potential field

V (x, y) =
k

2
(x2 − y2) (15)

is a solution to Laplace’s equation, but only if the quadrupole is infinitely long
(k=constant). For finite quads, we use the expansion

V (x, y, z) =
k

2
(x

2 − y2
)−

k′′

24
(x

4 − y4
) +

k′′′′

720
(x

6 − y6
)− ... (16)

(That’s right, it does not fit the rn cos(nθ) multipolar expansion.) The quartic
term gives a cubic force term which leads to the following focusing error,

∆x′ =
−1

f2LQ

(
7

6
x3 − 1

2
xy2

)
, (17)

where LQ is the quad length and f the focal length. It is important to note that
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this is independent of aperture size or fringe field hardness: indeed, the
aberration is not affected by changing the fringe field shape.

The formula for magnetic quads is similar:

∆x′ =
−1

f2LQ

(
1

3
x3 + xy2

)
, (18)

So electrostatic quads are not really worse than magnetic quads; might
actually be better for e.g. ribbon beams.

For both cases, let’s say ∆x′ = −1
f2LQ

(
Ax3 +Bxy2

)
, where A ∼ B ∼ 1.

Roughly speaking,
∆ε

ε
=

∆x′

ε/x̂
∼ x̂4

εf2LQ
(19)
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This formula has an obvious consequence: In any transport system where
optics strengths and beam sizes are given, the only way to reduce
emittance growth due to aberrations is to lengthen the “worst-offending”
quadrupoles. Further, damaging effects scale as beam size to the fourth
power. This can mean that some quads may have to be shortened. Example
below makes this clearer.

To reiterate, (1) ‘large’ does not mean large aperture occupation fraction, (2)
fiddling with fringe-field-shape gains nothing in 3rd order. (Off topic: it does
gain in 5th and higher, where softer fringe fields result in lower aberration;
opposite to intuition!)
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Quad Match Example

We apply this to the example shown in the Fig. 3. The RFQ requires matched
βT = 6.125 cm and the beam comes from a FODO section where
βT = 84.6 cm. With final quadrupoles of effective length L = 8.4 cm, we get
x̂ = 1.8 cm, f = 9.7 cm, with desired acceptance ε = 0.005 cm.2 We get

∆ε

ε
∼ 1.84

0.005× 9.72 × 8.4
= 2.6 (20)

To improve the emittance growth, we shorten the final quad in order to
decrease the size of the beam in the next-to-final quad. In this case (Fig. 4),
beam size is only one half as large, so result is 1/16 or

∆ε

ε
∼ 0.17. (21)

2commonly: “50πmm-mrad”
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Figure 3: First order beam envelopes for match to RFQ. Emittance is 50µm.
Red is x-envelope, green is y-envelope, plotted for clarity as if it is negative.
Yellow is the quadrupole strength function. This is for exact first order match
ignoring the third order aberrations. Emittance growth is very bad as can be
seen in blue curve of Fig. 5
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Figure 4: Optimized RFQ match, taking into account third order aberrations
according to equation 17.
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Figure 5: These calculations were verified with COSY-∞. Emittance contours
(i.e. constant action) in phase space for previous envelope figures. Left is x -Px,
right is y -Py. These were calculated from the COSY-∞ transfer maps. Black
is the optimized case for the design acceptance ε = 50µm, where the long
next-to-last quad is brought forward by shrinking the final quad, as shown in
Fig. 4. Blue, green and red are for the non-optimum configuration: blue is the
matched beam ε = 50µm, green is for ε = 12.5µm, red is for ε = 3µm.
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Dipole Bender

Dipole magnets or electrostatic benders are similar to quadrupoles in that
their lowest order aberrations are insensitive to field falloff shaping and extent.
The difference is that the lowest order is quadratic rather than cubic force. See
my Snowmass talk for derivations.

For the sector magnet, the nonlinear kicks are as follows (L = ρθ, the
trajectory length):

∆x′ = − L

2ρ3
y2 and ∆y′ = −L

ρ3
xy (22)

Often for dipoles, the length L is not small compared with the focal length, so
the thin lens approximation used in estimating the aberration is not very good.
In that case, the calculation can simply split the dipole once or twice.

For the electrostatic dipole bender, I’ve solved the general toroidal case. Here,
c is the ratio of electrode curvature in the bend plane to the non-bend plane.
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This means c = 0 is a cylindrical bend and c = 1 is a spherical one.

∆x′ =
L

ρ3

[(
−4 +

7

2
c− c2

)
x2 +

(
−1

2
c+ c2

)
y2

]
(23)

∆y′ =
L

ρ3

(
−c+ 2c2

)
xy (24)
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Summary: higher order kicks

Element ∆x′ ∆y′

Solenoid −x(x2+y2)
fwL −y(x2+y2)

fwL

w=fringe field length, f=focal length, L=eff. length
Einzel Lens −x(x2+y2)

ηfaL −y(x2+y2)
ηfaL

a=aperture radius, f=focal length, L=total length, 1/2 < η < 3/2

Magnetic Quadrupole −1
f2L

(
1
3x

3 + xy2
) −1

f2L

(
1
3y

3 + yx2
)

f=focal length, L=eff. length
Electric Quadrupole −1

f2L

(
7
6x

3 − 1
2xy

2
) −1

f2L

(
7
6y

3 − 1
2yx

2
)

Magnetic Sector Bend −θy
2

2ρ2 −θxy
ρ2

θ=bend angle, ρ=bend radius
Electric Cylindrical Bend −4θx2

ρ2 0

Electric Spherical Bend θ(−3x2+y2)
2ρ2

θxy
ρ2
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Growth from mismatch

The mismatch factor is the standard definition from e.g. Bovet et al. The ratio
of area of the ellipse that is similar but encapsulates the mismatched ellipse,
to the area of the mismatched ellipse, is D +

√
D2 − 1 where

D ≡ (β2γ1 + β1γ2)/2− α1α2 and α, β, γ are the ‘Twiss’ parameters of the
mismatched ellipse (subscript 1) and the matched ellipse (subscript 2). As
D − 1� 1, it is sufficient to summarize this as ∆ε/ε ≈

√
2(D − 1).
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Figure 6: Excerpt from Bovet et al.
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TRANSOPTR: Beam Transport Optimization
technique

Emittance growth factors are found for each transport element and combined
with the emittance growth due to mismatch, to form a function to be
minimized. We simply add (in quadrature) together, and minimize this as we
vary parameters such as quad position, length, strengths.

This does not pretend to be a higher order calculation; indeed, it is possible
(though highly unlikely) that the higher order of one element is compensated
by another, and this would only show up in an actual higher order calculation.
As stated, the intention is not to find accurate higher order effects, only to
ensure that they are negligible.
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Optimization Engine

There are many optimization techniques for designing and tuning beam
transport lines. Some are built into the transport codes themselves. Almost all
of these work on the basis of reducing an error to zero by finding local
derivatives of the error with respect to the parameters. I use a downhill
simplex method. It’s fast and robust.

It is also easily modified to incorporate simulated annealing for more than 3
free parameters. I use routines from the book Numerical Recipes by Press,
Flannery, et al.

Applied to the design of a transport channel we proceed as follows.

1. Choose a set of parameters such as quad strengths, locations, and their
allowed ranges.

2. The “temperature” is the fraction of the full range of variation of any
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parameter, so at T = 1, all parameters vary randomly through their full
ranges.

3. The sum (χ) of all possible effects to be minimized, such as mismatch,
emittance growth, etc. with their appropriate weights, is calculated for each
of N parameter sets.

4. A region in parameter space is chosen that contains the best values, but
the volume of the region is shrunk by reducing T , multiplying it by a factor
α(< 1).

5. This continues until either T or χ is smaller than some tolerance (typically
10−4 for single precision).

For as few as 3 parameters, α can be 0.88, with N = 8, resulting in only about
100 evaluations of the beamline to achieve 10−4 accuracy. But this number of
evaluations increases exponentially with number of parameters.
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As example, we take the RFQ match mentioned above. See animation (or try
this one).

Input files for this case are as follows: Transport subroutine:

SUBROUTINE tSYSTEM
COMMON /BLOC1/q0,q1,q2,q3,q4,d2,d3,d4,d5,xcm,ycm,wab
d1=63.7205-d2-d3-d4-d5
call DRIFT( 5.0205,’. ’)
call EQUAD( q0 , 2.5400, 2.3200,wab,’Q-periodic’)
call DRIFT( d1,’. ’)
call EQUAD( -q1 , 2.5400, 2.3200,wab,’IRA:Q1’)
call DRIFT( d2,’. ’)
call EQUAD( q2 , 2.5400, 2.3200,wab,’IRA:Q2’)
call DRIFT( d3,’. ’)
call EQUAD( -q3 , 2.5400, 3.3200,wab,’IRA:Q3’)
call DRIFT( d4,’. ’)
call EQUAD( q4 , 1.2700, 1.1600,wab,’IRA:Q4’)
call DRIFT( d5,’waist’)
call match(1,xcm,1.,1) !1 means x weight = 1.
call match(3,ycm,1.,1) !3 means y
RETURN
END
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Data file:
0.060 0 0 27930.0 1 0. !60keV, mass=30u
1 3 5. 0.5E-5
0 -0.
0.65054 18.4506 .65054 18.4506 1.5 0.476 !initial beam
1. 1000. 1. 1000. 1. 100. 0. .3937008 !units
3 !correlation parameters
1 2 0.909106
3 4 -0.909106
5 6 -1.
12 !number of parameters

0.000 .0 5.0 1 !5 quad strengths
0.000 .0 5.0 1
0.000 .0 5.0 1
0.000 .0 5.0 1
0.000 .0 5.0 1

8.0000 0. 60. 1 !inter-quad spacings
8.00 0. 60. 1
8.00 0. 60. 1
8.00 0. 60. 1

0.175 0. 1. 0 !waist size
0.175 0. 1. 0

5. 0. 100. 0 !weight for quad aberration deps/eps
1.E-6 900
03 1. 0.98 50

8 free parameters required 140,000 calls to the transport system subroutine,
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7.4 seconds CPU time (M3 Mac). Others:

free parameters Calls CPU on Mac
8 140,000 7.4 s
7 13,000 0.71 s
6 1,700 0.11 s
5 825 0.06 s
4 215 0.03 s

N.B.: In this example, almost any arrangement with 4 parameters (typically,
just the 4 quad strengths) can yield an exact match to the RFQ. But there is
only one best arrangement of quad spacing that minimizes aberrations. That
requires all 8 parameters.

Just for fun, here is a larger example but run from a GUI:

Matching demo. First let Q5,7,8 vary to get better match. Fix them, set final 4
quads to vary and adjust Q50. Watch how it maintains the match to the RFQ.
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Conclusions – non-integration cases

Simple formulas for the lowest order aberrations and can be used to estimate
emittance growth. A simple strategy for beam transport system design
optimization is to add these growths to the growth from mismatch, to form an
error function to be minimized. Efficient first order transport codes (with or
without space charge) can be augmented in this way. An example is
TRANSOPTR, which uses a minimization engine to vary beamline parameters
to find an optimum with negligible emittance growth.

At TRIUMF, many beamlines have been efficiently designed in this way, and
perform as predicted.
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Lecture 2 start

Will cover:

• Space charge and how it requires integration of equations of motion.

• Dividend of integration mode is that it gains ability to handle any linear
elements...

• even linear accelerators, but first

• need to clarify the longitudinal coordinates.

• Some examples.

And remember, Blue text are exercises for the student.
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TRANSOPTR: Integration mode

TRANSOPTR was originally written in 1981. It, like the original envelope codes
TRANSPORT and TRACE3D included only elements whose transfer matrices
could be written in closed form and were known. As stated above, this
required all elements to be “hard-edged”: to get anything more accurate would
require chopping into bits.

Similarly, the first attempts to extend to include space charge were a real
kludge: to subdivide elements and interleave defocus thin lenses to carry the
linear part of the space charge force. (Some codes in use - TRACE3D, I
believe - still do this.) The right way to do it is to derive the equations of motion
of the σ matrix elements and have envelope code itself numerically integrate
through the elements. The exact differential equations of Sacherer were
incorporated into TRANSOPTR by Mark deJong, for the express purpose of
including space charge.
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History:

Already in 1959, Kapchinsky and Vladimirsky had found the equations of
envelope evolution for case of continuous beams uniform in configuration and
phase space. Seems too highly idealized to be useful, right? Also severely
limited as cannot include any coupling, either between transverse directions or
with longitudinal. I’ll show how theirs was a special case for a very general
formalism.

In 1970, Frank Sacherer showed that the same equations result from finding
the equations of motion of the beam envelope (the second moments of the
beam distribution). But his more general formalism allowed for any linear
forces, including coupling, dispersion, etc. and further extended it to bunched
beams.
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Statistical Approach to Beam Dynamics
If there is a distribution of particles, one would like to calculate the final
distribution from the initial. The behaviour of the beam centroid

〈X〉 =

N∑
i=1

X/N (25)

(where N is the number of particles, and X is the column vector
(x, Px, y, Py, z, Pz)

T as in eqn. 31) is determined by the same transfer matrix
M as for an individual particle. This is the equation of ‘first moments’. At the
next level, one would like to calculate the evolution of the beam widths, or,
‘second moments’ given by

σ ≡ 1

N

N∑
i=1

XXT (26)
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For example, σ11 = 〈x2〉, σ12 = 〈xPx〉, σ13 = 〈xy〉, .... For a distribution of
particles so dense that we do not see graininess on any scale of our
diagnostics, the sums go over into integrals. For example,

σ12 =

∫ ∫ ∫ ∫ ∫ ∫
xPx f(x, Px, y, Py, z, Pz) dx dPx dy dPy dz dPz,

where f is the distribution in phase space, normalized so that its integral over
all 6 phase space dimensions is 1.

Here, s is the independent variable, and as will be shown, the longitudinal
coordinates are: z = βc∆t, Pz = (βc)−1∆E.

By direct substitution into the definition of σ, we find

σf = MσiM
T (27)
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The transfer matrix M = I + Fds over an infinitesimal length ds gives the
equations of motion of individual particles:

X′ = FX. (28)

We find directly the differential equation for σ:

σ′ = Fσ + σFT . (29)

This is the envelope equation. For the full 6D case, it represents 21
equations. (Because σ is symmetric.)
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What is F? Infinitesimal Transfer Matrix
The general Hamiltonian can be Taylor-expanded by orders in the 6
dependent variables3,

H(x1, x2, x3, x4, x5, x6; s) =
∑
i

∂H

∂xi

∣∣∣∣
0

xi +
1

2

∑
i,j

∂2H

∂xi∂xj

∣∣∣∣∣
0

xixj + ... (30)

The subscript 0 means that the derivatives are evaluated on the reference
trajectory ∀i, xi = 0. (Keep in mind though that these partial derivatives in general are functions of the independent

variable t or s.)

Terms of first order are eliminated by transforming to a coordinate system
measured with respect to the reference trajectory (the Frenet-Serret system).
The remaining terms are second order and higher, and for linear motion, we
simply truncate at the second order.

3In this shorthand, x1 = x, x2 = Px, x3 = y, ...
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Then the Hamiltonian looks like H = Ax2 +BxPx +Cxy+ ...+UP 2
z : there are

21 independent terms. A = 1
2
∂2H
∂x2 , and so on; all derivatives are evaluated on

the reference trajectory, and may be a function of the independent variable.
We know the equations of motion from the Hamiltonian to be: x′ = ∂H/∂Px,
P ′x = −∂H/∂x, etc., where primes denote derivatives w.r.t. the independent
variable. Therefore the equations of motion:



x′

P ′x
y′

P ′y
z′

P ′z


=



∂2H
∂Px∂x

∂2H
∂P 2

x

∂2H
∂Px∂y

∂2H
∂Px∂Py

∂2H
∂Px∂z

∂2H
∂Px∂Pz

−∂
2H
∂x2 − ∂2H

∂x∂Px
− ∂2H
∂x∂y − ∂2H

∂x∂Py
− ∂2H
∂x∂z − ∂2H

∂x∂Pz
∂2H
∂Py∂x

∂2H
∂Py∂Px

∂2H
∂Py∂y

∂2H
∂P 2

y

∂2H
∂Py∂z

∂2H
∂Py∂Pz

− ∂2H
∂y∂x − ∂2H

∂y∂Px
−∂

2H
∂y2 − ∂2H

∂y∂Py
− ∂2H
∂y∂z − ∂2H

∂y∂Pz
∂2H
∂Pz∂x

∂2H
∂Pz∂Px

∂2H
∂Pz∂y

∂2H
∂Pz∂Py

∂2H
∂Pz∂z

∂2H
∂P 2

z

− ∂2H
∂z∂x − ∂2H

∂z∂Px
− ∂2H
∂z∂y − ∂2H

∂z∂Py
−∂

2H
∂z2 − ∂2H

∂z∂Pz




x
Px
y
Py
z
Pz

 (31)
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or, X′ = FX, where F is called the ‘infinitesimal transfer matrix’. Or in other
words, if we define H := ∂2H

∂xi∂xj
, i.e. the Hessian, and S as the fundamental

symplectic matrix

S =


0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0

 ,

then
F = SH.
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Of the 36 elements of F there are only 21 independent ones. Easily integrated
if F=constant, directly as

Xfinal = MXinitial

where
M = exp[Fs] = I + Fs+

1

2
F2s2 +

1

3!
F3s3 + ...,

Try this with the quadrupole case:

F =

(
0 1
−k 0

)
.

You just need the powers of F, which are very easy in this case. Out will pop
the Taylor series of the sines and cosines.

This is an approach that goes back to the 50’s and MURA. Here is Don
Edwards and Lee Teng from 1973 :
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A particular case is where the beamline consists only of elements that keep all
3 degrees of freedom independent of each other, and there is only focusing
forces −F (s)x and −G(s)y that vary with s. In other words, the Hamiltonian is

H =
P 2
x

2
+ F (s)

x2

2
+
P 2
y

2
+G(s)

y2

2
+
P 2
z

2γ2
(32)

so

F =



0 1 0 0 0 0
−F 0 0 0 0 0
0 0 0 1 0 0
0 0 −G 0 0 0
0 0 0 0 0 1

γ2

0 0 0 0 0 0


(33)

(These give the standard Hill equations x′′ + F (s)x = 0, y′′ +G(s)y = 0, and
also z′ = Pz/γ

2 =constant.)
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Example: Quadrupole (Hard-edge)

Then force coefficients are constant: F (s) = K2, G(s) = −K2 (i.e. constants;
not functions of s), in Mathematica using MatrixExp:

MatrixExp




0 1 0 0
−K2 0 0 0

0 0 0 1
0 0 K2 0

L

MatrixExp




0 1 0 0
−K2 0 0 0

0 0 0 1
0 0 K2 0

L

MatrixExp




0 1 0 0
−K2 0 0 0

0 0 0 1
0 0 K2 0

L

 =

=


Cos[KL] Sin[KL]

K 0 0
−KSin[KL] Cos[KL] 0 0

0 0 Cosh[KL] Sinh[KL]
K

0 0 KSinh[KL] Cosh[KL]
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Example: Solenoid (Hard-edge)

K(s) = B(s)
2Bρ is often as in TRANSPORT approximated as constant (hard-edge).

Not a good approximation for short solenoids as in electron injectors.

If constant,

MatrixExp




0 1 K 0
−K2 0 0 K
−K 0 0 1

0 −K −K2 0

L

MatrixExp




0 1 K 0
−K2 0 0 K
−K 0 0 1

0 −K −K2 0

L

MatrixExp




0 1 K 0
−K2 0 0 K
−K 0 0 1

0 −K −K2 0

L

 =

=


Cos[KL]2 Sin[2KL]

2K Cos[KL]Sin[KL] Sin[KL]2

K
−1

2KSin[2KL] Cos[KL]2 −KSin[KL]2 Cos[KL]Sin[KL]

−1
2Sin[2KL] −Sin[KL]2

K Cos[KL]2 Sin[2KL]
2K

KSin[KL]2 −1
2Sin[2KL] −1

2KSin[2KL] Cos[KL]2



AR. Baartman, TRIUMF – 2023 IAS 62



Apply Rotation: Rot[A ] =


Cos[A] 0 Sin[A] 0

0 Cos[A] 0 Sin[A]
−Sin[A] 0 Cos[A] 0

0 −Sin[A] 0 Cos[A]

 ;Rot[A ] =


Cos[A] 0 Sin[A] 0

0 Cos[A] 0 Sin[A]
−Sin[A] 0 Cos[A] 0

0 −Sin[A] 0 Cos[A]

 ;Rot[A ] =


Cos[A] 0 Sin[A] 0

0 Cos[A] 0 Sin[A]
−Sin[A] 0 Cos[A] 0

0 −Sin[A] 0 Cos[A]

 ;

Rot[−KL].M ]]Rot[−KL].M ]]Rot[−KL].M ]] =


Cos[KL] Sin[KL]

K 0 0
−KSin[KL] Cos[KL] 0 0

0 0 Cos[KL] Sin[KL]
K

0 0 −KSin[KL] Cos[KL]
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Space Charge part of F

But space charge is somewhat different.

Space Charge with Uniform elliptical beam:

While for both a round beam and a flat beam, the equipotentials have the
same shape as the charge density contours, the in-between case does not.

Density contours aspect ratio a
b , but

equipotential contours
√

a
b .
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For a uniformly populated elliptical beam, semi-axis a in the x-direction and b
in the y-direction, the electric field inside the beam becomes

Ex =
λ

2πε0

2x

a(a+ b)
=

λ

4πε0

x

x̃(x̃+ ỹ)
=
I × 30 Ω

β

x

x̃(x̃+ ỹ)
(34)

Ey =
λ

2πε0

2y

b(a+ b)
=

λ

4πε0

y

ỹ(x̃+ ỹ)
=
I × 30 Ω

β

y

ỹ(x̃+ ỹ)

The last step follows because recall that for a uniform beam, a = 2x̃, b = 2ỹ.
This can be written as a potential

Φ(x, y) = − λ

4πε0

1

2(x̃+ ỹ)

(
x2

x̃
+
y2

ỹ

)
(35)

To find the derivation, try Foundations of Potential Theory by O. Kellogg. It’s tedious, but you
can at least simply show that this potential satisfies the Poisson equation∇2Φ = (λ/A)/ε0,
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where A = πab the ellipse area.

These fields give the linear part of the force. Fx = md2x
dt2

= mv2x′′ = 2Ekx
′′ = 2qV0x

′′. (V0

is the non-relativistic energy per charge, Ek/q introduced in lecture 3.)

x
′′|SC =

Fx

2qV0

=
Ex
2V0

=
I × 30 Ω

2βV0

x

x̃(x̃+ ỹ)
(36)

(Remember: λ
4πε0

= 30 ΩI
β .)

The dimensionless factor 2I×30 Ω
βV0

is referred to as the ‘generalized perveance’ Kperv, so this
can be written as

x
′′|SC =

Kperv

4

x

x̃(x̃+ ỹ)
(37)

(For the y equation, just swap the x’s and y’s.)
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Envelope equation

We stay with the simple case where the beamline consists only of elements that keep all 3
degrees of freedom independent of each other, and there is only a linear focusing force k(s)

that varies with s. Moreover, k(s) contains a component from space charge. In other words,
the Hamiltonian is P 2/2 + k(s)x2/2, so

F =

(
0 1

−k 0

)
. (38)

This can also be demonstrated from x′ = P , and P ′ = −kx, or in matrix form, X′ = FX:(
x′

P ′

)
=

(
0 1

−k 0

)(
x

P

)
. (39)
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Plugging F into 29, we have(
σ′11 σ′12

σ′12 σ′22

)
=

(
2σ12 σ22 − kσ11

σ22 − kσ11 −2kσ12

)
. (40)

Combining some,
σ
′′
11 = 2σ

′
12 = 2σ22 − 2kσ11 (41)

The emittance ε is given by the determinant

ε
2

= σ11σ22 − σ2
12. (42)

It is constant. (Exercise: Show this by using eqn. 40 to prove that (ε2)′ = 0.)

We can eliminate σ22:
σ
′′
11 = 2(ε

2
+ σ

2
12)/σ11 − 2kσ11 (43)

Now recall the RMS size as x̃ =
√
σ11. Then σ′11 = 2x̃x̃′ so σ12 = x̃x̃′ and

σ′′11 = 2x̃x̃′′ + 2x̃′2. Putting this all together, we get

x̃
′′

+ kx̃−
ε2

x̃3
= 0, (44)
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Space Charge Envelope Equations

Let us separate k = kx −
Kperv

4x̃(x̃+ỹ) where the former is from externally applied fields of linear
lenses, and latter term comes from eqn. 37.

x̃
′′

+ kxx̃−
Kperv/4

x̃+ ỹ
−
ε2
x

x̃3
= 0 (45)

ỹ
′′

+ kyỹ −
Kperv/4

x̃+ ỹ
−
ε2
y

ỹ3
= 0

Alternatively, if we let a = 2x̃, b = 2ỹ then emittances εa = 4εx, εb = 4εy:

a
′′

+ kxa−
Kperv

a+ b
−
ε2
a

a3
= 0 (46)

b
′′

+ kyb−
Kperv

a+ b
−
ε2
b

b3
= 0

These two are the “Kapchinsky-Vladimirsky” equations.
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Unbunched and Bunched beams
In F-matrix form, the space charge contribution is

Fsc =



0 0 0 0 0 0
Kxsc 0 0 0 0 0

0 0 0 0 0 0
0 0 Kysc 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


(47)

where Kxsc =
Kperv
a(a+b), Kysc =

Kperv
b(a+b). If the beam is in bunches rather than continuous, we

need the electric field of an ellipsoidal distribution of charge. It turns out, surprisingly
(Sacherer, 1971), that the RMS linear part of the space charge self-field depends mainly on
the RMS size of the distribution and only very weakly on its exact form. To within a few
percent, the RMS linear part of space charge is the same as that for a uniformly populated
ellipsoid. The space charge infinitesimal transfer matrix is

Fsc =



0 0 0 0 0 0
Kxsc 0 0 0 0 0

0 0 0 0 0 0
0 0 Kysc 0 0 0
0 0 0 0 0 0
0 0 0 0 Kzsc 0


(48)
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where

Kxsc =
Q

4πε0(mc2/e)β2γ3

1

a3
g

(
b2

a2
,
c2

a2

)
(49)

Kysc =
Q

4πε0(mc2/e)β2γ3

1

b3
g

(
c2

b2
,
a2

b2

)
(50)

Kzsc =
Q

4πε0(mc2/e)β2γ3

1

c3
g

(
a2

c2
,
b2

c2

)
(51)

where Q is the bunch charge, the ellipsoid semi-axes in the x, y, z directions are a, b, c, and
the function g is

g(u, v) =
3

2

∫ ∞
0

(1 + s)
−3/2

(u+ s)
−1/2

(v + s)
−1/2

ds (52)

This is from the family of Carlson elliptic integrals.

AR. Baartman, TRIUMF – 2023 IAS 71

http://en.wikipedia.org/wiki/Carlson_symmetric_form


But space charge is nonlinear... what about
arbitrary bunch distributions, orientations

This was thought to be a huge impediment to using envelope formulation for when space
charge not negligible.

AR. Baartman, TRIUMF – 2023 IAS 72



AR. Baartman, TRIUMF – 2023 IAS 73



But there is a surprising property that if the beam is not uniform, as long as we use RMS

values, and the distribution has elliptical symmetry f(x, y) = f

(
x2

a2 + y2

b2

)
, it remains true.

This remarkable theorem was discovered and proved by Frank Sacherer (1971).

The only complication is that the RMS emittance is then not guaranteed to be constant.
However, for well-designed beamlines, the emittance growth is minimal.
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For arbitrary distributions of the type f(x, y, z) = f

(
x2

a2 + y2

b2
+ z2

c2

)
, replace a, b, c with the

RMS values according to the values they have for the uniform case, namely, a2 = 5σ11,
b2 = 5σ33. Because of relativity, c2 is a special case: c2 = 5γ2σ55. For arbitrary orientations,
have to apply a rotation matrix to F , thus making F23, F25, F41, F45, F61, F63 also non-zero.

Notice the recursiveness. This is the essential property of space charge: Particle trajectories
are linear even though the envelopes themselves are nonlinear.

AR. Baartman, TRIUMF – 2023 IAS 75



Successfully applied to:

• beamlines, achromatic fitting, space charge

• complex transport problems such as einzel lenses, soft-landing, into
solenoid, cyclotron inflectors

• synchrotrons: finding β-functions with space charge, investigating linear
coupling and coherent envelope oscillations (half-integer resonances)

• linear accelerators...

As well, it has optimization routines; simplex method, simulated annealing.
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Example: FNAL Booster

An interesting example is the FNAL booster. First of all, how do we find the
optics of a synchrotron? Simple: Launch a σ matrix, integrate around the ring,
find how it’s changed, allow input σ matrix to vary to fit the final beam to the
initial. This gives the (space charge-modified) periodic beta and dispersion
functions: animation (or try this one). These weird β-functions can be
understood as in the following. Bottom is when they diverge due to an
ordinary 13/2 resonance driven by a focusing irregularity. The top is the case
when the resonance is approached due to space charge tune depression.
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For comparison: CSNS multi-particle (pyIMPACT) simulation of similar case.
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Extra dividend from use of equations of motion

There is only a very small subset of elements that are well described by
“canned” analytic transfer matrices, and these are highly idealized: solenoids,
quadrupoles and dipoles with hard edges, and of course drifts. That’s about it!

Cannot do: Quads with soft edges, realistic solenoids, einzel lenses, Ambient
Axial Magnetic Field, Arbitrary Axial Electric Field for soft-landing on target,
Soft-edge Acceleration Column, Spiral Inflector, Permanent Magnet Axial
Lens, RF devices: Bunchers, Linear Accelerator, RFQ. Yes, these are all now
in TRANSOPTR.

This methodology allows not only space charge, but any general case with no
closed-form solution to equations of motion, e.g. varying axial fields either
magnetic or electric as in soft-landing ions into a sample; linear accelerators;
short-soft-edge quads;... virtually any element whose Hamiltonian is known.
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Anyone can add to the code

In fact, for any optics device that is intended to be linear, the procedure for
adding it to the code is:

1. Write down the Hamiltonian for Frenet-Serret frame.

2. Expand to quadratic order (there should not be any linear terms, why?).

3. Find the F-matrix, and code it in.
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Example: Cyclotron injection line

After 37 years of operation, we needed to replace the 13 metre, 300 keV vertical section of the
injection line into the cyclotron. All optics in this line are electrostatic, and the insulators were
becoming conductive with accumulated deposits. This line has everything: a bunching beam
with strong space charge (5 mA peak), a varying axial solenoid field, and finally a spiral
inflector: a device that strongly couples are phase space variables. We did not want to
reproduce the existing line, which performed poorly and contained features we no longer
needed. It consists of a FODO periodic section of about 10 meters and 10 periods, and a
matching section that has to accommodate various levels of space charge and match to a
pathologically-coupled device, the spiral inflector.

The wide range of conditions requires millions of simulations while varying quad lengths,
strengths, orientations, and locations. Multiparticle is impractical here. Instead all calculations
were made using TRANSOPTR; not a single multi-particle simulation was run. Yet, it operated
as soon as we turned it on in 2011, at theoretical quadrupole settings, and has run evr since.
Reminder: as all optics is electrostatic, and internal to the vacuum chamber, a local spill of as
little as 1% can melt electrodes.
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As built (1974∼2011)
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Strong x-y coupling due to axial field

0 0.1 0.2 0.3
0

2

4

6

8

10

12

B
(s)  [T

e
sla

s, m
e
te

rs]

FaxialB =



0 1 −1
2ρ(s) 0 0 0

−1

4ρ(s)2
0 0 −1

2ρ(s) 0 0
1

2ρ(s) 0 0 1 0 0

0 1
2ρ(s)

−1

4ρ(s)2
0 0 0

0 0 0 0 0 1

0 0 0 0 0 0


(53)

which arises from the solenoid Hamiltonian

HaxialB =
1

2

(
Px −

y

2ρ(s)

)2

+
1

2

(
Py +

x

2ρ(s)

)2

+
1

2
P

2
z , (54)

where 1/ρ(s) = B(s)/(Bρ), is a function of the independent variable
s. Interpolate it using cubic spline.
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Strong x-y-z coupling in the inflector

(See A Canonical Treatment of the Spiral Inflector for Cyclotrons Baartman and Kleeven, Part.
Acc. 41 (1993).)

H(x, y, z, Px, Py, Pz; s) = (55)

1

2

[(
Px +

TC

A
y

)2

+

(
Py −

TC

A
x

)2

+

(
Pz +

2TS

A
y +

2

A
x

)2
]

−
1

2A2

[
ξ(x+ k

′
Sy)

2
+ x

2
+ kk

′
(C

2
x

2
+ y

2
) + 2TSxy

]
.

where

ξ =
1 + kk′S2

1 + k′2S2
, S = sin(s/A), C = cos(s/A), T =

k + k′

2
, k =

A

ρ
+ k

′
,

A is electric radius, ρ = ρ(s) is magnetic radius, k′ is tilt parameter.

AR. Baartman, TRIUMF – 2023 IAS 85



inflector matrix

Finflector =



0 1 TC
A 0 0 0

3−ξ+(T2−kk′)C2

−A2 0 3TS−k′ξS
−A2

TC
A 0 −2

A

−TC
A 0 0 1 0 0

3TS−k′ξS
−A2

−TC
A

(1+3S2)T2−kk′−k′2ξS2

−A2 0 0 −2TS
A

2
A 0 2TS

A 0 0 1

0 0 0 0 0 0


. (56)

BTW, if integrated with no space charge, this gives matrix that agrees with other codes
(CASINO, AXORB).

The inflector is followed by a deflector: crossed E and B fields so looks like a Wien filter.
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Injection Matching Detail
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The original sin of TRANSPORT (what are the
canonical variables?)

I’ll cover the specific case of the linear accelerator, but first, we have to clarify
something:

TRANSPORT (and many other codes since) use incorrect longitudinal
variables and these prohibit proper calculation of accelerated beams.
SLAC-91 (Karl Brown) mentions “At any position in the system... ”. This
means that time t is NOT the independent variable. Then goes on: “...particle
represented by a vector”:

(x, θ, y, φ, l, δ)

(where l is trajectory length and δ ≡ ∆P/P ).
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This is wrong:
The canonical pair are (t− t0, E − E0) or (∆t,∆E), not (l,∆P/P ).
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Why did it ever work?

The reason it works usually is by applying a trick: If we scale by βc, we can
make them agree, since βc∆t = z, ∆E/(βc) = ∆P , but only true of static
magnetic elements: Electric potential Φ = 0, ~A 6= ~A(t).

Table 1: Various codes and their longitudinal coordinate definitions. The fifth column (EoM?)
refers to whether the equations of motion are integrated as opposed to having stored transfer
matrices. The rightmost column refers to whether the reference particle can be accelerated
within an element. (K ≡ (γ0 − 1)mc2, ∆t ≡ t− t0)

code Order x5 x6 Canonical? EoM? β0(s)?

TRANSPORT up to 3 −(βct− β0ct0) ∆P
P0

No No –

GIOS 3 ∆t
t0

∆E
K

No No –

TRACE3D 1 −β0c∆t
∆P
P0

No No impulses

COSY-∞ ∞ −β0c∆tγ0
1+γ0

∆E
K

Yes Yes No

MARYLIE 3 −c∆t ∆E
P0c

Yes Yes No

TRANSOPTR 1 −β0c∆t
∆E
β0c

Yes Yes Yes
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Linac:

This includes any rf gap, bunchers, multi-gap DTL tanks, elliptical electron cavities, etc.
Anything symmetric, all that is needed is an interpolatable axial electric field.

Here is the Hamiltonian for the distance along the reference trajectory s as the independent
variable,

H(x, Px, y, Py, t, E; s) = (57)

= −qAs −

√(
E − qΦ

c

)2

−m2c2 − (Px − qAx)2 − (Py − qAy)2
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Potentials

The case of RF axially-symmetric electric field can be handled entirely with no electric
potential (Φ = 0), and time-varying vector potential. This has been presented a number of
times in the past (e.g. E.E. Chambers;1968), but we are interested in the following more
experimentally-useful case: The electric field along the axis E(s) has been measured and is
therefore known, and the geometry is exactly axially symmetric.

For a gauge that zeroes both Ax and Ay, the potentials are

Ax = 0, Ay = 0, As = −E(s)

(
1−

ω2

c2

x2 + y2

4

)
sin(ωt+ θ)

ω
(58)

and scalar potential:

Φ = −
∂Ψ

∂t
= E ′ cos(ωt+ θ)

x2 + y2

4
(59)
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Now if we expand the Hamiltonian, we get:

H(x, Px, y, Py, z, Pz; s) =
P 2
x

2P
+
P 2
y

2P
+

q

2βc

(
E ′C − ES

ωβ

c

)
r2

2
+

P 2
z

2γ2P
+
qEC
βc

zPz

γ2P
−
qEωS
β2c2

z2

2
(60)

(C ≡ cos(ωt0(s) + θ), S ≡ sin(ωt0(s) + θ)) This has nice intuitive explanations for the
individual terms. (1) The factor in parentheses represents usual the focal power of an RF gap,
e.g. a buncher. (2) Taking the limit as ω → 0 reproduces precisely the Hamiltonian of the DC
accelerator. Note that in that case, E ′ = −φ′′.

To connect to Frank Tecker’s lecture, this formalism implicitly includes the ‘transit time factor’.
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Infinitesimal Transfer Matrix F

Now that the Hamiltonian for linear motion (eqn. 60) has been obtained, it is a simple matter to
find the infinitesimal transfer matrix F . Writing the equations of motion (x′ = ∂H/∂Px,
P ′x = −∂H/∂x, etc.), the following F -matrix is found for the axially symmetric linear
accelerator:

F =



0 1
P 0 0 0 0

A(s) 0 0 0 0 0

0 0 0 1
P 0 0

0 0 A(s) 0 0 0

0 0 0 0 β′
β

1
γ2P

0 0 0 0 B(s) −β′
β


. (61)

where we have defined:

A(s) =
−q
2βc

(
E ′C − ES

ωβ

c

)
, B(s) =

qEωS
β2c2

. (62)
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But:

• F-matrix is now a function of time as well as s,
• Energy is changing so
• Therefore, time and energy of the reference particle not known a priori anymore: they must

be calculated by separate integrals.

This means there are 2 more equations of motion besides the 21 for the σ matrix. A priori, we
do not know the reference particle’s energy and time coordinates. We need these in order to
expand about them. (See eqn. 30.) They can be found from the equations of motion
evaluated at x = y = Px = Py = 0:

dE0

ds
=

∂H

∂t
= qE cos(ωt0 + θ) (63)

dt0

ds
= −

∂H

∂E
=
E0

P0

=
1

β0c
(64)

These 2 are added to the 21 mentioned previously; 23 solved together.
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Example: ISAC DTL tank 3

Here’s an example of what you can do with a fast code: Find all possible combinations of
phase and amplitude on a 15-gap DTL designed for accelerating heavy ions.
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This particular tank, accelerates ions from 0.46 MeV/u to 0.78 MeV/u. (β = 3.1% to 4.1%)
The frequency is 105 MHz so βλ = 9.0 cm at start and 11.7 cm at the exit.
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Plots are from a single calculation of half a million runs through the DTL, that took a few hours
to run.

Reminder: TRANSOPTR can only do linear optics, so if bunch is too long, it will “banana” due
to the rf nonlinearity. The black areas are for bunches of half-length longer than 1 cm, i.e.
bunches extending over a length of greater than 80◦. The preferred path is the light colour,
typically one tenth this length.

The design operating condition is the centre of the white island in the following plot, where the
energy gain has been divided by the rf amplitude:
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RFQ:

Not satisfied with axially symmetric linacs, we’ve also coded an RFQ, where x and y focusing
have opposite signs. Interesting and subtle difference in that spatial phase must be tracked.

Hamiltonian Dynamics

In an RFQ, the fields are electric and the magnetic forces are negligible. It is therefore
possible to analyze it with only a time-varying scalar potential. Then with the independent
variable is s, the distance along the path taken by the reference particle, the Hamiltonian is
−Ps, the canonical momentum in the direction of the reference trajectory.

Hs(x, Px, y, Py, t, E; s) = −
√

(E − qΦ)
2
/c2 −m2c2 − P 2

x − P 2
y (65)
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Hamiltonian for Linear motion

Since we are only interested in the linear motion, we expand the resulting Hamiltonian to
second order in the 6 canonical variables (using the abbreviation P ≡ βγmc):

H(x, Px, y, Py, z, Pz) =
E0

βc
−P+

P 2
x

2P
+
P 2
y

2P
+

P 2
z

2γ2P
+
A+

2
x

2
+
A−
2
y

2
+
C
2
z

2
+B zPz (66)

where

A± =
qV0 sin (ωt0 + φ)

(
k2A10 cosψ ± 4A01

)
4βc

, (67)

B =
qV0A10

(
k sinψ sin (ωt0 + φ) + (ω/(βc)) cosψ cos (ωt0 + φ)

)
2β2γ3mc2

, (68)

C =
qV0(ω/(βc))

2A10 cosψ
(
qV0A10/(β

2γ3mc2) cosψ cos2 (ωt0 + φ)− 2 sin (ωt0 + φ)
)

4βc
.(69)
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TRIUMF’s RFQ
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2-term TRANSOPTR simulation of the ISAC-RFQ, showing two times rms envelopes on the
left-hand vertical axis, with the y-envelopes shown as negative values for clarity. The
simulation runs from the start of the RFQ tank at s = 0. Two separate envelopes are shown,
corresponding to a matched and a mismatched case, in the transverse dimensions. The
mismatched case highlighting the betatron oscillation is shown in color including the
longitudinal envelope. The beam energy is shown on the right-hand vertical axis. The
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transversely matched envelope is shown in light grey.

We’ve also run the CERN Linac-4 RFQ case, without and with space charge. The former
takes 30,000 RK steps, and 131 ms on my Mac, the latter with 35 mA (100 pC per bunch)
takes 146 ms.
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Comparison to PARMTEQ

PARMTEQ normalized particle density distribution compared to TRANSOPTR ellipse of area
4πεrms, corresponding to 86% containment for Gaussian distributed beam. Profiles for x-Px,
y-Py and t-E, taken at the RFQ vacuum tank exit, 15.83 cm downstream of the vanes.
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Application examples: elinac

We have fitted the initial beam right at the cathode, where initially beam energy is 20 eV, and
energy spread is 14% and divergence is ∼ 1 radian.
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Note the 3 cavities are exactly like the one Frank showed on his slide 21.
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Here’s a closer look at the starting gun... 3 solenoids, buncher, injector linac:
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OLIS steering training for Bayesian optimization

See animation (or try this one).
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MCAT

Model-Controlled Accelerator Tuning intended to sequentially optimize a transport and/or
accelerator string, using the TRANSOPTR model.
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Conclusions

Envelope calculations (TRANSOPTR) are most efficient for linear optics with space charge
and/or any time the focal parameters vary with s and no closed-form matrix is possible.
Calculations are orders of magnitude faster than multi-particle simulations.

• Beamlines, including minimizing aberrations, can be rapidly designed.
• On-the-fly tuning/optimization is possible in control rooms, even with space charge. This is

useful to correct for failed hardware, e.g. as a cavity quenches.
• All aspects of the linear behaviour, including linear coupling, envelope oscillations

(half-integer resonances).

Not good for

• Designing higher order corrections, such as required for spectrometers and separators.
• Simulating anything inherently nonlinear. Examples are bunching a DC beam, bunch

deformation due to sinusoidal rf waveform.
• Collimation, High intensity beam losses due to halo.
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