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1. Acceleration with radiofrequency cavities 
requires synchronization of particles and RF 
field. Outside of the cavity the approaching 
particle bunch does not experience the RF field

2. The particle bunch enters the cavity. The 
electric field is pointing in the direction of 
the beam axis  The particle is accelerated 

3. The particle bunch leaves the cavity. The 
field direction has changed again
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• Cavities are used to accelerate particles by an 
alternating electric field

• An oscillating electric field causes an oscillating 
magnetic field

• The cavity confines the electromagnetic fields by 
surface shielding currents

• These currents create losses (heating), which can be 
reduced by using superconducting materials
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In this lecture we will address these questions:
• Superconductivity means no resistance. Why can’t we reduce the losses 

zero?
• Why is niobium the material choice which requires costly  helium 

cooling?
• What are the fundamental and technical limitations of niobium SRF 

cavities?
• Highest Energy Gain Maximum Accelerating Gradient?
• Lowest cryogenic losses Maximum Quality Factor? 

• What are possible future materials and what are the challenges? 

• Cavities are used to accelerate particles by an 
alternating electric field

• An oscillating electric field causes an oscillating 
magnetic field

• The cavity confines the electromagnetic fields by 
surface shielding currents

• These currents create losses (heating), which can be 
reduced by using superconducting materials
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Performance of SRF cavities
There are two parameters which define the performance of an SRF cavity: Quality factor 
and the accelerating gradient

B
E

The quality factor:

Q0 =G/RS=𝜔𝜔U/Ploss
G: Geometry factor

The accelerating gradient can 
be limited by the peak surface 
electric field (field emission) or 
the  peak surface magnetic field 
(quench)

Accelerating Gradient Eacc ∝ Bpeak

There are two ways to increase performance:  Shape and material optimization
In this lecture the focus is on material optimization. What are the intrinsic limitations to Rs and Bpeak

Shape optimization and extrinsic limitations, i.e Multipacting, field emission and thermal 
breakdown are covered in Bob’s lecture
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Surface treatments for State of the art SRF cavities

• SRF is highly efficient but complex 
technology

• Supercurrents only flow within a 
few tens of nanometres
– Performance is very sensitive to 

near surface material 
properties which can be 
engineered by heat treatments 
in vacuum or low pressure gas 
atmosphere

• Maximum quality factor and 
accelerating gradient depend on 
surface treatment but also on RF 
frequency, cavity shape (surface 
field configuration), ambient 
magnetic flux in a correlated and 
not fully understood way 
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Superconducting Materials
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Outline
• Quick recap of London theory and demonstration of the Meissner 

effect
• Surface Resistance 

– Electrodynamics of normal conductors
• Normal and anomalous skin effect

– Electrodynamics of superconductors 
• Surface impedance of superconductors in the two fluid model and the BCS 

theory
• Residual resistance 
• Field dependence of surface resistance 

• Maximum RF field
– DC critical fields, Hc, Hc1, Hc2, Hsh
– Critical field under RF 

• Materials for SRF 
– Why niobium
– Materials beyond niobium
– Multilayers
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The London Theory

Assume an electron which is freely accelerated by an electric field

F= 𝑚𝑚𝒂𝒂 = 𝒎𝒎𝜕𝜕𝒗𝒗
𝜕𝜕𝜕𝜕

= −𝑒𝑒𝑬𝑬

Lorentz force acting on the particle:

J= −𝑒𝑒𝑛𝑛𝑆𝑆𝒗𝒗
Definition of the current density

𝜕𝜕𝑱𝑱
𝜕𝜕𝜕𝜕

= 𝑛𝑛𝑆𝑆𝑒𝑒2

𝑚𝑚
E

1st London Equation

To explain the Meissner effect we want to derive an equation that relates J to B
Maxwell equation:

𝛁𝛁 × 𝑬𝑬 = −
𝜕𝜕𝑩𝑩
𝜕𝜕𝑡𝑡
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The London Theory

𝛁𝛁 × 𝑩𝑩 = 𝜇𝜇0𝑱𝑱

𝜕𝜕
𝜕𝜕𝜕𝜕

𝛻𝛻 × 𝑱𝑱 + 𝑛𝑛𝑆𝑆𝑒𝑒2

𝑚𝑚
B =0

𝛁𝛁 × 𝛁𝛁 × 𝑩𝑩 = 𝜇𝜇0𝛁𝛁 × 𝑱𝑱

𝛁𝛁 × 𝛁𝛁 × 𝑩𝑩 = 𝛁𝛁 𝛁𝛁𝑩𝑩 − 𝛁𝛁𝟐𝟐𝑩𝑩
𝛁𝛁𝑩𝑩 = 𝟎𝟎Maxwell equation

𝜕𝜕
𝜕𝜕𝜕𝜕

𝛁𝛁𝟐𝟐𝑩𝑩 − 𝜇𝜇0𝑛𝑛𝑆𝑆𝑒𝑒2

𝑚𝑚
B =0

𝜇𝜇0𝛁𝛁 × 𝑱𝑱 = −𝛁𝛁𝟐𝟐𝑩𝑩

Ampere´s law                            relates the current density J and the magnetic flux density B𝛁𝛁 × 𝑩𝑩 = 𝜇𝜇0𝑱𝑱
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penetration 
depth

B0

B(x)

Ampere´s law                            relates the current density J and the magnetic flux density B𝛁𝛁 × 𝑩𝑩 = 𝜇𝜇0𝑱𝑱

T. Junginger – IAS Saskatoon 10/39



The London Theory

𝛁𝛁 × 𝑩𝑩 = 𝜇𝜇0𝑱𝑱

𝜕𝜕
𝜕𝜕𝜕𝜕

𝛻𝛻 × 𝑱𝑱 + 𝑛𝑛𝑆𝑆𝑒𝑒2

𝑚𝑚
B =0

𝛁𝛁 × 𝛁𝛁 × 𝑩𝑩 = 𝜇𝜇0𝛁𝛁 × 𝑱𝑱

𝛁𝛁 × 𝛁𝛁 × 𝑩𝑩 = 𝛁𝛁 𝛁𝛁𝑩𝑩 − 𝛁𝛁𝟐𝟐𝑩𝑩
𝛁𝛁𝑩𝑩 = 𝟎𝟎Maxwell equation

𝜕𝜕
𝜕𝜕𝜕𝜕

𝛁𝛁𝟐𝟐𝑩𝑩 − 𝜇𝜇0𝑛𝑛𝑆𝑆𝑒𝑒2

𝑚𝑚
B =0

𝜇𝜇0𝛁𝛁 × 𝑱𝑱 = −𝛁𝛁𝟐𝟐𝑩𝑩

Let us check which solution is physically meaningful

2. B(x)= 𝐵𝐵0exp(− 𝑥𝑥
𝜆𝜆𝐿𝐿

)

2 possible solutions: 1. 𝐵𝐵 = const

𝜆𝜆𝐿𝐿 =
𝑚𝑚

𝜇𝜇0𝑛𝑛𝑆𝑆𝑒𝑒2
with

London 
penetration 
depth

B0

B(x)

Ampere´s law                            relates the current density J and the magnetic flux density B𝛁𝛁 × 𝑩𝑩 = 𝜇𝜇0𝑱𝑱

T. Junginger – IAS Saskatoon 10/39



Perfect Conductor

1. 𝐵𝐵 = const

2. B(x)= 𝐵𝐵0exp(− 𝑥𝑥
𝜆𝜆𝐿𝐿

)

Consider a conductor 
which fulfills these 
solutions when cooled 
below its critical 
temperature

𝜕𝜕
𝜕𝜕𝜕𝜕

𝛁𝛁𝟐𝟐𝑩𝑩 − 𝜇𝜇0𝑛𝑛𝑆𝑆𝑒𝑒2

𝑚𝑚
B =0
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Superconductor - Meissner Effect 

1. 𝐵𝐵 = const

2. B(x)= 𝐵𝐵0exp(− 𝑥𝑥
𝜆𝜆𝐿𝐿

)

• Superconductivity is a phase transition
• The final state does not depend on the order of cooling and applying field
• The constant solution is not physically meaningful

T. Junginger – IAS Saskatoon 12/39



London Theory and Meissner Effect

𝜕𝜕
𝜕𝜕𝜕𝜕

𝛻𝛻 × 𝑱𝑱 + 𝑛𝑛𝑆𝑆𝑒𝑒2

𝑚𝑚
B =0

1. 𝐵𝐵 = const

2. B(x)= 𝐵𝐵0exp(− 𝑥𝑥
𝜆𝜆𝐿𝐿

)

Only exponential decaying 
fields are observed

To explain the Meissner effect 
the Londons postulated:
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Only exponential decaying 
fields are observed

To explain the Meissner effect 
the Londons postulated:

Finally we have derived the two London equations:

𝜕𝜕𝑱𝑱
𝜕𝜕𝜕𝜕

= 𝑛𝑛𝑆𝑆𝑒𝑒2

𝑚𝑚
E

Zero Resistance

𝛻𝛻 × 𝑱𝑱 = −
𝑛𝑛𝑆𝑆𝑒𝑒2

𝑚𝑚
B

Meissner Effect
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Outline
• Quick recap of London theory and demonstration of the Meissner 

effect
• Surface Resistance 

– Electrodynamics of normal conductors
• Normal and anomalous skin effect

– Electrodynamics of superconductors 
• Surface impedance of superconductors in the two fluid model and the BCS 

theory
• Residual resistance 
• Field dependence of surface resistance 

• Maximum RF field
– DC critical fields, Hc, Hc1, Hc2, Hsh
– Critical field under RF 

• Materials for SRF 
– Why niobium
– Materials beyond niobium
– Multilayers
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Surface resistance: intuitive meaning
Since we will deal a lot with the surface resistance Rs in the following, here is a simple 
DC model that gives a rough idea of what it means:
Consider a square sheet of metal with resistivity ρ and calculate its resistance to a 
transverse current flow:

current
a d
a ρ

=R

d

a

a

Courtesy: S. Calatroni

Resistance of a square metal 
sheet of thickness d:

Surface Resistance of a 
square metal sheet with 
penetration depth δ:
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Since we will deal a lot with the surface resistance Rs in the following, here is a simple 
DC model that gives a rough idea of what it means:
Consider a square sheet of metal with resistivity ρ and calculate its resistance to a 
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Surface resistance: intuitive meaning
Since we will deal a lot with the surface resistance Rs in the following, here is a simple 
DC model that gives a rough idea of what it means:
Consider a square sheet of metal with resistivity ρ and calculate its resistance to a 
transverse current flow:

In this model the surface resistance Rs is the resistance that a square piece of conductor 
opposes to the flow of the currents induced by the RF wave, within a layer δ

current
a d
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=

Courtesy: S. Calatroni

Resistance of a square metal 
sheet of thickness d:

Surface Resistance of a 
square metal sheet with 
penetration depth δ:

T. Junginger – IAS Saskatoon 24/39



What happens at low temperature?
Surface resistance of Cu at 1.5 GHz as a function of temperature with 
conductivity σ=1/ρ

• At room temperature the 
conductivity is dominated by 
phonon scattering

• At low temperature phonons 
“freeze out” and the 
conductivity depends on 
impurity concentration.

• The residual resistivity ratio 
RRR = σ(0K)/σ(300K) is a 
measure of material purity 

Rs(4.2 K) ≅ 1.3 mΩ

To reduce RS below the mΩ range for RF application we need superconductivity!

Rs=1/σδ

)()( xx Ej σ≠
Anomalous skin effect l>δ

Courtesy: G. Ciovati

σ
ωµµ

δσ 2
1 0=== ss XR

…in spite of the resistivity decreasing by a factor 300 
from 300 K to 4.2 K, Rs only decreases by a factor of ~8! 
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Surface Resistance of Superconductors
• Superconducting currents are 

transported by Cooper pairs formed of 
two electrons
– flow without friction  DC supercurrents 

are lossless
• For temperatures above 0 K not all 

electrons form Cooper pairs
• Cooper pairs have a finite inertia. Under 

RF fields a time-varying E-field is induced 
in the material. Normal electrons see 
this field, move and dissipate    

Rs > 0

+
𝑛𝑛𝑛𝑛(𝑇𝑇) ∝ 𝑒𝑒−∆/kB𝑇𝑇

j=σE
+
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Surface Resistance in the two fluid model
Basic ingredients for RF 
superconductivity

• Two fluid model (Gorter-Casimir)
• Maxwell electrodynamics
• London equations

𝑛𝑛𝑛𝑛 = exp(−
Δ
𝑘𝑘𝑏𝑏𝑇𝑇

)

el
ec

tro
n

de
ns

ity

temperature (K)

Tc

n
ns

Basic assumptions of two fluid
model

• all free electrons of the superconductor 
are divided into two groups:
• superconducting electrons of density ns
• normal electrons of density nn

• The total density of the free electrons is
n = ns + nn

• As the temperature increases from 0 to Tc, 
the density ns decreases from n to 0.
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Surface Resistance in the two fluid model

• Electrodynamics of sc is the same as nc, only that we have to 
change σ→ σ1 – i σ2

EiJ
L

s 2
0

1
λµω

−= ( )EiJJJ sn 21 σσ −=+=

σ
ω

στσ
m

en
m
en sn

2

2

2

1 , ==

• Penetration depth:

σ1 << σ2 for sc at T<<Tc
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London equation:

tieEE ω
0=

Two fluid model:

Scattering time τ = l/vF ≈ 10-14s
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Surface Resistance in the two fluid model

• Electrodynamics of sc is the same as nc, only that we have to 
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• Penetration depth:

σ1 << σ2 for sc at T<<Tc

Interesting to note here: -We have derived λL from DC arguments before
- Now we find δ=λL for T<<Tc
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Surface Resistance in the two fluid model
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• Electrodynamics of sc is the same as nc, only that we have to 
change σ→ σ1 + i σ2

• Recall the definition of the surface impedance:

• For σ1<< σ2 we obtain:

sss XiRZ +=

3
1

22
02

1
LsR λσωµ=

LsX λµω 0=
Ls: kinetic inductance
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Rs within BCS theory
• Mattis and Bardeen (1958) used time dependent perturbation 

theory to derive RS for weak RF fields
• Within this theory no simple formula can be derived. Several 

approximate formula can be found in the literature for some 
limits. For example for the dirty limit

• There are numerical codes (Halbritter (1970) to calculate RBCS
as a function of ω, T and material parameters (ξ0, λL, Tc, ∆, l)

• For example, 
http://www.lepp.cornell.edu/~liepe/webpage/researchsrimp.
html

𝑅𝑅𝑆𝑆 = 1
2
𝜔𝜔2𝜆𝜆3𝜎𝜎1𝜇𝜇02ln Δ

ℏ𝜔𝜔
exp − Δ

𝑘𝑘𝑏𝑏𝑇𝑇
/T
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Rs within BCS theory

Be carefureful here. The website 
suggests 40nm. The input required is 
πξ0/2, while ξ0≈40nm for Nb
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BCS vs two fluid model
• The treatment within BCS theory and two-fluid 

model give qualitatively similar results
• Quantitatively they can differ by an order of 

magnitude
– The BCS treatment gives qualitatively correct results 

for low field
• To treat experimental data approximate formulae 

are useful, e.g. 

• Here A accounts for all material parameters

𝑅𝑅S =
𝜔𝜔2A
𝑇𝑇

exp −
Δ
𝑘𝑘𝑏𝑏𝑇𝑇
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The RF surface resistance

This equation implies RS:
• Has a minimum for medium purity
• Is proportional to 𝜔𝜔2

• Decreases exponentially with temperature
• Vanishes as T0 K
• Is independent of RF field strength

In the following we will compare these assumptions to 
experimental data and modify the formula if necessary

𝑅𝑅BCS = 𝜔𝜔2𝜆𝜆3𝜎𝜎1𝜇𝜇02exp −
Δ

𝑘𝑘𝑏𝑏𝑇𝑇
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Material purity dependence of Rs

( )
l

l L 2
1 0πξλλ +≈

• The dependence of the penetration depth on l is approximated as
• σ1 ∝ l

21−∝

∝

lR
lR

s

s if l >> ξ0 (“clean” limit)

if l << ξ0 (“dirty” limit)

Rs has a minimum for l = πξ0/4
C. Benvenuti et 
al., Physica C 
316 (1999) 153.

Nb on Cu,1.5 GHz, 4.2 K

“clean”

“dirty”

Example: Nb films sputtered on 
Cu substrate
• By changing the sputtering 

species, the mean free path 
was varied

• RRR of niobium on copper 
cavities can be tuned for 
lowest RS. 

𝑅𝑅BCS = 𝜔𝜔2𝜆𝜆3𝜎𝜎1𝜇𝜇02exp −
Δ

𝑘𝑘𝑏𝑏𝑇𝑇

𝑅𝑅𝑆𝑆 ∝ 1 +
𝜋𝜋𝜉𝜉0

𝑙𝑙

3/2

𝑙𝑙
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CERN – Nb on Cu cavities
CERN first started to use Nb on Cu technology for 
LEP-II cavities.
Du to the low frequency and optimal mean free 
path economical operation at 4.5K was possible

Hie-Isolde cavities

LHC cavities

352 MHz

400 MHz

100 MHzThe technology was then 
adopted for the 400 MHz LHC 
cavities

Hie-Isolde Quarter Wave Resonator 
commissioned in 2015

T. Junginger – IAS Saskatoon 39/39


	Basic principles of RF Superconductivity 1/2
	Particle Acceleration with cavities
	Particle Acceleration with cavities
	Particle Acceleration with cavities
	Particle Acceleration with cavities
	Particle Acceleration with cavities
	Particle Acceleration with cavities
	Performance of SRF cavities
	Surface treatments for State of the art SRF cavities
	Superconducting Materials
	Outline
	Outline
	The London Theory
	The London Theory
	The London Theory
	The London Theory
	The London Theory
	The London Theory
	Perfect Conductor
	Perfect Conductor
	Perfect Conductor
	Perfect Conductor
	Superconductor - Meissner Effect 
	London Theory and Meissner Effect
	London Theory and Meissner Effect
	Outline
	Surface resistance: intuitive meaning
	Surface resistance: intuitive meaning
	Surface resistance: intuitive meaning
	Surface resistance: intuitive meaning
	Surface resistance: intuitive meaning
	What happens at low temperature?
	Surface Resistance of Superconductors
	Surface Resistance in the two fluid model
	Surface Resistance in the two fluid model
	Surface Resistance in the two fluid model
	Surface Resistance in the two fluid model
	Rs within BCS theory
	Rs within BCS theory
	BCS vs two fluid model
	The RF surface resistance
	Material purity dependence of Rs
	CERN – Nb on Cu cavities

