Fundamentals of superconductivity

Saskatoon, July 12, 2023 International Accelerator School: Super particle accelerators

Rogério de Sousa Dept. of Physics and Astronomy Centre for Advanced Materials and Related Technology (CAMTEC) University of Victoria, BC

International Accelerator School: Superconducting Science and Technology for

Outline

- 1. Survey of superconductivity
- 2. Microscopic origin: A survey of Cooper pairs and BCS theory
- 3. Macroscopic quantum behaviour and Ginzburg-Landau theory
- 4. Derivation of London equations and Meissner effect
- 5. Penetration depth and inductance
- 6. Critical fields and superconductors of Types I and II
- 7. Application to cavities: Quality factor and surface resistance due to quasiparticles

Why superconducting cavities? Ans: Extremely low loss.

Useful for quantum computing in the low energy regime, and for particle accelerators in the high energy regime

integration of 3d cavities to superconducting circuit chips.

• Cavity with highest lifetime in the industry (~30 ms)

Company Nord Quantique based in Sherbrooke - QC has as its main mission the

Survey of superconductivity

T decreases below the superconducting critical temperature T_c :

 The microscopic explanation for this was given by Bardeen, Cooper, and Schrieffer (BCS): For some materials, electronphonon interaction leads to attraction between electrons close to the Fermi surface. These form 2-electron "molecules" called Cooper pairs which move without resistance.

• You're probably familiar with the fact that resistance drops to zero when temperature

Cooper pair moving through lattice

Superconducting materials

https://nationalmaglab.org/education/magnet-academy/learn-the-basics/stories/superconductivity-101

VALUES OF T_c AND H_c FOR THE SUPERCONDUCTING ELEMENTS^a

				2 He
с	'n	8 0	۶F	¹⁰ Ne
4	15	16	17	18
Si	P	S	CI	Ar
2	33	se	35	36
Ge	As	Se	Br	Kr
o	51	52	53	⁵⁴
Sn	Sb	Te		Xe
2	83	Po	as	86
Pb	Bi	Po	At	Rn

	ទេ Tm	70 Yb	Lu
n	¹⁰¹	102	103
	Md	NO	Lr

LEMENT		<i>T_c</i> (K)	(G/
AI		1.196	
Cd		0.56	
Ga		1.091	
Hf		0.09	3
Hg	a (rhomb)	4.15	
	β	3.95	
In		3.40	
Ir		0.14	
La	a (hcp)	4.9	
	β (fcc)	6.06	1
Mo	And and a set of the	0.92	100
Nb		9.26	1
Os		0.655	
Pa		1.4	1
Pb		7.19	3
Re		1.698	
Ru		0.49	
Sn		3.72	
Ta		4.48	
Tc		7.77	1
Th		1.368	
Ti		0.39	
TI		2.39	
U	α	0.68	
	Y	1.80	

But... Zero resistance is not the whole story Something remarkable happens in the SC state: Meissner effect

• A SC is qualitatively different from a normal metal whose resistance goes to zero at T<T_c:

A. Myiazaki, "Basics of RF superconductivity and Nb material", SRF 2023 @Michigan State University

Microscopic origin of superconductivity Cooper pairs: Two-electron bound states at the Fermi surface

- strong attractive potential. V_{1} bown state only when $V_{0} \gtrsim \frac{5}{2}$
- Cooper, 1956: Consider two electrons in the Fermi surface of a Fermi gas. Even an infinitesimally small attraction forms a bound state!

• Free particles in 3d: Can only form a quantum bound state in the presence of a

Bardeen-Cooper-Schrieffer (BCS) theory

• At T<T_c, an energy gap opens at the Fermi surface. Excited states are "quasiparticles", the electrons that result when a Cooper pair is "broken". T_7T_c (NORMAL METAL)

TCTe (sc)

• SC GAP 0≈ 1.76 KgTc

Dependence of SC energy gap on T/T_c

A. Myiazaki, "Basics of RF superconductivity and Nb material", SRF 2023 @Michigan State University

• Minimize with respect to $\Psi^*(\mathbf{r})$:

Cooper pairs move without loosing coherence between each other ANALOGY: NORMAL METAL ~ LIGHT BULB. SC ~ LASER.

$$H = \frac{1}{2m^{*}} \left(\frac{4}{3} \vec{D} - e^{*}\vec{A}\right)^{2} + \beta |t|^{2} \quad AND \quad ENERGY = -0$$

$$= \frac{1}{2m^{*}} \left(\frac{4}{3} \vec{D} - e^{*}\vec{A}\right)^{2} + \beta |t|^{2} \quad AND \quad ENERGY = -0$$

$$= \frac{1}{2m^{*}} \left(\frac{4}{3} \vec{D} - e^{*}\vec{A}\right)^{2} + \beta |t|^{2} \quad AND \quad ENERGY = -0$$

• Interpret $|\Psi|^2$ as a d

ondon eqns from G-L
lensity, obtain current: Assume
$$324 = 74$$
, concurate $314 = -$
 $J_S = \frac{e^*\hbar}{m^*} \operatorname{Im}(\Psi^* \nabla \Psi) - \frac{e^{*2}}{m^*} |\Psi|^2 A$ Just Life PARAGULTY CHREA

• Plug $\Psi(r) = \sqrt{n_s} e^{i\theta(r)}$: Λ_s is volume density of coorer pairs $\Rightarrow J_s = e^{\frac{i\pi}{m}} I_m \left\{ \sqrt{n_s} e^{-i\theta} \sqrt{n_s} i te \theta \right\}$ $\Rightarrow f(\overline{v}\theta) = e^{t}(A + \Lambda \overline{J}_{s}), \Lambda = 0$ TAKE DX ON BOTH SIJES: $f_{\nabla \times (\overline{v} \theta)} : e^{*} (\overline{v} \times \overline{h} + \overline{h} \cdot \overline{v} \times \overline{f}) = \overline{o}$

$$e^{i\Theta} - e^{i\Theta} h_s \tilde{A} = e^{i\Theta} h_s \int \mathcal{B} \overline{\mathcal{D}} \Theta - e^{i\overline{A}} \tilde{A}$$

$$\frac{m^{+}}{(e^{+})^2 h_s}$$

$$\Rightarrow \tilde{B} = - \Lambda \tilde{D} \times \tilde{J}_s$$

$$\frac{m^{+}}{Relation}$$

$\implies D_L \Theta = C \quad AT \quad SC \quad SURFace$

London gauge B=-NTXJs IS VALID FOR ALL GAUGE CHOICES. Special choice: choose electrical scalar potential $\Xi_{=0}$, $\vec{E} = -\vec{b} \cdot \vec{E} - \frac{\partial \vec{A}}{\partial t} = -\frac{\partial \vec{A}}{\partial t}$. pro choose $\left\{ \vec{v} \cdot \vec{A} = -\mu \varepsilon v \right\} = 0$ $\hat{\partial} \vec{F}$, $\hat{n} \cdot \vec{A} = -\Lambda \hat{n} \cdot \vec{J}s$ for \hat{n} Normal To s < s urface. s urface of s c $\vec{\nabla} \cdot \vec{H} \vec{v} = e^{t} (\vec{v} \cdot \vec{A} + \Lambda \vec{v} \cdot \vec{J}_{s}) \implies \vec{D}^{2\Theta = 0}$ $\frac{1}{3} \frac{1}{3} \frac{1}{3} = e^{*} \left(\frac{1}{1} \frac{1}{3} + \frac{1}{1} \frac{1}{3} \right) = 1.$

t DLO SURF 50

 $\begin{cases} \nabla^2 \Theta = 0 \Rightarrow \Theta = \text{constant IN ALL CONTIGUES} \\ \forall \nabla_2 \Theta |_{S} = 0 \Rightarrow \Theta = \text{constant IN ALL CONTIGUES} \end{cases}$

 $\theta = const \Rightarrow \#(\overline{\theta}\theta) = e^*(\vec{\lambda} + \Lambda \vec{J}_5)$ $= \int_{S} \frac{1}{2} \int_{S} \frac{1}{$ DTAKE on Both SIDES: うう シート ジート ビート $3\overline{J}_{s} = 1\overline{E}$ [SI LONDON RELATION $3\overline{J}_{s} = 1\overline{E}$ (VALID IN ALL GOVGES!)

CLARGFUL: ONLY VALID FOR SPECIFIC LONDON GAVGE).

Explanation of the Meissner effect, penetration depth

• Plug Maxwell's $J_S = \frac{1}{\mu_0} \nabla \times B$ into 2nd London eqn: PEFINE AL= M

• Solve for a SC half space:

CONSIDER A SC FOR 770

VACULA Por 720

 $B = B(7)^{2}$

 $\vec{B} = -\Lambda \vec{v} \times \vec{J}_{s} = -\Lambda \vec{v} \times (\frac{1}{H_{u}} \vec{v} \times \vec{B}) = -\Lambda \vec{v} \times (\vec{v} \times \vec{B}) = -\Lambda \left[\vec{v} \times \vec{B} \right] = -\Lambda \left[\vec{v} \times \vec{B} \right]$ "Lowbon PENETRATION DEPTH". B VACUUM

Meissner effect

$$\nabla x \ \vec{B} = -\Lambda \nabla x (\vec{D} \times \vec{J}_{S})$$

 $\Rightarrow \Lambda_{0} \ \vec{J}_{S} = -\Lambda [\vec{D} (\vec{\nabla} \cdot \vec{J}_{S}) - D^{2} \vec{J}_{S}]$
 $= -\frac{M_{S}}{M_{S}} = 0$
 $= -\frac{M_{S}}{M_{S}}$

ct for supercurrent

 \vec{J}_{s}] = $\Lambda \nabla \vec{J}_{s}$

AT THE SURFACE! SC, UP TO V~ ZA~ 100 GHZ

MODEL : DRUDE n drie É Assume 7 = 00 (METAL HOS ZERO RESISTIVITY) J:her - m. 355 = nsletie exception compare to

Compare to non-SC "ideal" metal with zero resistance

Effective penetration depth λ

- scales: "bare" coherence length ξ_0 and electron mean-free path ℓ .
- THIS HAPPENS BECNISE SC
- ARE "NON LOCAL".
- BUT LONDON EGNS

- MPACT ON 2:
- LONDON LIMIT" LONDON WITH J ~ J V Z.

• The penetration depth measured in experiments is affected by two additional length

Nonlocality: $J_s(F,t) = -\frac{3}{4TS_0} \int d^3r \frac{R(F,A(F,t))}{R^4} = \frac{3}{4TS_0} \int d^3r \frac{R(F,A(F,t))}{R^4} = \frac{3}{R^4}$ $\vec{R} = (\vec{r} - \vec{r}')$ BUT LONDON EQNIS DSSUME LOCALITY- $J_{s}(F,t) = -\frac{1}{2}A(F,t)$ $J_{s}(F,t) = -\frac{1}{2}A(F$

Super	conductor	$\lambda_L (nm)$	ξ ₀ (
Al		16	16	
In		19	4	
Nb		39	3	
6 Pb	bu use	37	8	
vi BKP	$1 = (\lambda_1 \cdot 3)$	35	2	

Back to G-L: Critical field

Neglect fields and gradients inside a bulk SC:

$$\frac{\delta F}{\delta \Psi^{*}} = \frac{\partial F}{\partial \Psi^{*}} - \nabla \cdot \frac{\partial F}{\partial \nabla \Psi^{*}} = \alpha \Psi$$

$$\Rightarrow (\alpha + \beta | \Psi|^{2}) \Psi = 0 \Rightarrow |\Psi|^{2} = \Lambda_{s} = -\frac{\alpha'}{\beta}$$
PLUG (\\ Back INTO FREE ENERGY:

$$F_{s} = F_{N} + d | \Psi|^{2} + \frac{\beta}{2} | \Psi|^{4} = F_{N} + \alpha (\alpha)$$
From Thermody/NAMKS:

$$F_{s} - F_{N} = -\frac{1}{2} \frac{\alpha'}{\beta} \Rightarrow B_{z} = -\frac{1}{2} \frac{\alpha'}{\beta} \alpha$$

Mixed state of a type-II SC

- In Type-II superconductors flux tubes are created each carrying one flux quantum (the minimal flux allowed by quantum mechanics)
- Flux tubes are repulsive creating therefore the vortex lattice

T. Junginger - Basic principles of RF Superconductivity SRF17 Lanzhou, China

Magnetization curve

- Under DC fields flux tubes can be pinned no dissipation
 - SC magnets are operated between H_{c1} and H_{c2}
- Under RF fields flux tubes oscillate dissipation
 - RF cavities are operated in the Meissner state

T. Junginger - Basic principles of RF Superconductivity SRF17 Lanzhou, China

Cavity quality factor and surface resistance

• Quality factor due to electromagnetic (Ohmic) loss:

RAJUS

G 13 "GEOMETRICAL FACTOR IN CHMS. ONLY DEPENDS ON GEOMETRY, NOT ON SIZE.

MODE : TM **16** $G \approx \frac{L_r \pi_n}{r}$ Wr Ko 278 1/0 1/ 1/2

- Elliptical cavity $G \sim 250 \Omega$
- Spoke cavity $G \sim 133 \Omega$
- Quarter-wave resonator $G \sim 30 \Omega$

A. Myiazaki, "Basics of RF superconductivity and Nb material", SRF 2023 @Michigan State University

• NORMAL METAL (Cn): Rs = ____ $(\tau_{+}, \tau_{2}) \dot{E}(\omega)$ PART DUE TO THERMAL QUASIPARTICLES. $| = k_{1}^{2} + k_{2}^{2} + k_{3}^{2}$ PLUG ~ 「、 パイン n Wr

Rs vs mean-free path I $R_s = \sigma_1 p_0^2 \lambda^3 \omega_p^2$ て、人人 ふんふ そく 十子 $R_{s} \ll l(1 + \frac{2}{5})^{3/2} = (l^{2/3} + 3.l^{3/2})^{3/2}$ $\frac{dk_{s}}{dl} \sim \frac{2}{3} \int \frac{1}{3} - \frac{1}{3} \int \frac{1}{3} = 0$

A. Myiazaki, "Basics of RF superconductivity and Nb material", SRF 2023 @Michigan State University

Counter intuitively, super clean material is not ideal for SRF cavities! → Heat treatment, doping, etc to make *surface* dirty

Optical conductivity from BCS theory

D.C. Mattis and J. Bardeen, Phys. Rev. 111, 412 (1958)

• For $\hbar\omega < 2\Delta$, thermal quasiparticles cause $\sigma_1 > 0$ (real part of conductivity):

$$\frac{\sigma_1}{\sigma_N} = \frac{2}{\hbar\omega} \int_{\Delta}^{\infty} dE \frac{E(E + \hbar\omega) + \Delta^2}{\sqrt{E^2 - \Delta^2}\sqrt{(E + \hbar\omega)^2 - \Delta^2}} \left[f(E) - f(E + \hbar\omega) \right]$$

• BCS also predicts deviations from the London σ_2 when T>0:

$$\frac{\sigma_2}{\sigma_N} = \frac{1}{\hbar\omega} \int_{\Delta-\hbar\omega}^{\Delta} dE \frac{E(E+\hbar\omega) + \Delta^2}{\sqrt{\Delta^2 - E^2}\sqrt{(E+\hbar\omega)^2 - \Delta^2}} \left[1 - 2f(E+\hbar\omega)\right]$$

PPn

Microscopic calculation of Rs using BCS

• Calculate $R_S = \frac{\sigma_1}{\sigma_2^2 \lambda}$ using Mattis-Bardeen and two-fluid expression for λ (T): $\lambda(T) = \frac{\lambda(0)}{\sqrt{1 - (T/T_c)^4}} \quad \longleftarrow \begin{array}{l} \mbox{Excellent approximation} \\ \mbox{For } \mbox{J(t) in All Cases} \end{array}$

Temperature dependence is exponential

References and further reading

- Lecture notes from A. Myiazaki, "Basics of RF superconductivity and Nb material", SRF 2023 @Michigan State University, download from: https://srf2023.vrws.de/talks/thtut100_talk.pdf
- IF YOU DO PARTICLE PAYSKS, READ THIS: • S. Weinberg, Superconductivity for particular theorists, Prog. Theor. Phys. Supplement 86, 43 (1986).
 - M. Tinkham, Introduction to Superconductivity, 2nd ed. (McGraw-Hill, 1996).
 - T. Van Duzer and C. W. Turner, Superconductive Devices and Circuits, 2nd ed. (Prentice-Hall, 1999).
 - P.G. de Gennes, Superconductivity of metals and alloys (Westview press, 1999).
 - N. Gorgichuk, T. Junginger, and R. de Sousa, Phys. Rev. Appl. 19, 024006 (2023).
 - P. S. Yapa, T. Makaro, and R. de Sousa, Impact of nonlocal electrodynamics on flux noise and inductance of superconducting wires, Phys. Rev. Appl. 11, 024041 (2019).

