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The original title has been:
Accelerator Physics Primer and Need for SC Technologies

The real need for SC technologies does not need two hours to be
explained (and will be explained in other presentations).

In short:

Higher Fields in dipole magnets (2T - at least 9T)
Higher gradients and/or apertures in quadrupoles

Much higher Q-factor for accelerating cavities
Hence this presentation is a 2 hour recap of basic accelerator

beam dynamics in order to understand the specifications of SC
magnets.

H.Schmickler, ex-CERN,
presented by F.Tecker, CERN



Content

Basics (only 5 minutes):

- Phenomenology of Special relativity
- simple examples of E-fields and B-fields, multipole expansion of B-fields

Linear Optics:
- Hamiltonian formalism—> derivative of Hill's equation from Hamiltonian
Hamiltonian in different Coordinate Systems, weak focusing

- linear optics: motion of single particle in a lattice, phase space plots
- trajectory, closed orbit, dispersion, weak focusing
- strong focusing, tune, chromaticity
- linear Imperfections, feed-down, coupling

- “Ataste” of non-linear dynamics

Liouville’s Theorem:

- Definition of emittance
- emittance preservation in conservative systems

- filamentation due to non-linearities

Phenomenology of Collective Effects:

- Space Charge
- Touschek and Intrabeam Scattering
- Wakefields
H.Schmickler, ex-CERN,
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1: Relativistic particles

Conservation of transverse momentum
- A moving object in its frame S’ has a mass m’ =™/,

m 1 1
Or m= ymg = 2 = m0+5m0v2(c—2) (approximation for small v)
v
1-(2)?
Multiplied by c?:
2 2 1 2 2
mc* = mgycC +Em0v = moc“+T

Interpretation:

- Total energy E is E=m-c?
- For small velocities the total energy is the sum of the kinetic energy plus the rest energy
- Particle at rest has rest energy E, = m, - ¢?

> Always true (Einstein): E=m-c* = ym, - c?
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Relativistic momentum p = mv = ymyv = ymyBc

From page before (squared):

2 _ .2 4_ .2 2 4_, 1 2 4_ ; 1-B*+p? 2 4 _ 202 2 4

Ec= m°c* = y*my“c —(1_[;2)7’”00—(—1_'32 Yme“c* = (1 +y“p)mp-c
E

E? = (moc®)? + (pc)? =) ~= J(mge)? + p?

Or by introducing new units [E] = eV ; [p] =eV/c ; [m] = eV/c? E? = my? + p?

1

0.9+
0.8+

Due to the small rest il

mass electrons reach
already almost the speed

06+
05+
0.4+

of light with relatively low
Kinetic energy, but protons

0.3r

only in the GeV range zf_ —electron (E,;=0511 VieV)|
—— proton (E;=938 MeV)
8o 01 1 0 100 1000 10000
Kinetic Energy [MeV]
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Electromagnetic Fields and forces onto charged particles

» Described by Maxwell’'s equations and by the Lorentz-force
* Lots of mathematics, we will only “look™ at the equations
* Only electric fields can transfer momentum to charged particles

- EM cavities for acceleration - F. Tecker
« Magnetic fields are used to bend or focus the trajectory of charged particles

—> construction of different types of accelerator magnets

* Also electrostatic forces can bend and focus beams; but since the forces are
small we often neglect this part

Integral form

L 5 [ - =
7{ B -dl = pg <I + e()f— / E- (1’,A>
Jr ot Js

Differential form Lorentz force
Vol — L
- - typical velocity in high energy machines:
V-B=0 ,
Example:
— - 95 , Vs
VxE:—d—B Bu=]lT > F=q=:=3=:=10*‘"—7=::1—i
ot s om’
. MV
S . B =, 02 F =q#300—
V x B = p (] 4 6()§E> 9 m

%_/
equivalent el. field FE

H.Schmickler, ex-CERN,
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But: for specific cases we also use electrostatic elements

CESR separator

SPS ZX separator

LEP ZL separator
“ . ' \ ‘
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We need real magnets in an accelerator...not
any arbitrary shapes of magnetic fields, but

nicely classified field types by making reference
to a multipole expansion of magnetic fields:

In the usual notation:
n—1

X+1iy

B +iB =B,) (b,+ia,)
n=1 ref

bn are “normal multipole coefficients” (LEFT)

and an are “skew multipole coefficients” (RIGHT)

‘ref’ means some reference value
n=1, dipole field

n=2, quadrupole field
n=3, sextupole field

Images: A. Wolski, https://cds.cern.ch/record/1333874
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Different Mathematical descriptions...a real pain?

We use differential equations, matrix — formalism, Hamiltonians, perturbation
theory...
- Is there a right or wrong?
- Is it personal likings?
- Depending on the problem to solve (or the phenomenon to describe)
one mathematical tool is more adequate than the other.
- One should be aware of many of them in order to be able to choose

the most adequate one.

In the following slides we will look at the very simple example of the classical
spring-oscillator and describe it with a differential equation, with a matrix
formalism and by using the Hamiltonian equations of motion.

But first: Definition of phase space and action functional

H.Schmickler, ex-CERN, 11
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Phase Space

We are used to describe a particle by its 3D position (x,y,z in carth. Coordinates)
(blue arrows below)

In order to get the dynamics of the system, we need to know the momentum
(pX, py, pz); red arrows below

In accelerators we describe a particle state as a 6D phase space point.
Below the projection into a 2 D phase space plot.
The points correspond to the x-position (q,) and the x component of the p-vector (p,).

o T Phase Space

Px

"a‘f‘} o J A |
| ax

This shows one of the three

possible phase space projections
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w Warning: We often use the term phase space for the 6N dimensional space defined by
\ . o X, X’ (space, angle), but this the “trace space” of the particles.

At constant energy phase space and trace space have similar physical interpretation

Trace space Phase space

Px

7
e x x

_dx _dx dt _ B,

X = —

ds dt ds B Px = Mg CYyel BX

An important argument to use the trace space is that in praxis we can

measure angles of particle trajectories, but it is very difficult to measure the
momentum of a particle.



Action functional S

)

Define action S:= p dq

tq

No immediate physical interpretation of S

Much more important:

“Stationary” action principle:= 12
Nature chooses path from t; to t,
such that the action integral is a
minimum and stationary

- we have a new invariant, ty
which we can use to study the
dynamics of the system

2y
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Harmonic oscillator (1/3)

Solved by using a Differential equation

Starting from:

Newton’s Kraftansatz (F = m * a) k
and
= = = . k..
F=m-4a=-=k or £ = —Z% -
m

As at school we “guess” the solution:

I(f) — f’\() - COS Wi
| . [k
And we find that with the angular frequency w = \/ o

We have found a description of the motion of -
our system.

H.Schmickler, ex-CERN, 15
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Harmonic oscillator (2/3)

Solved by using a matrix formalism

The general solution to the previous differential equation is a
linear combination of a cosine- and a sine-term.
So after an additional differentiation we get:

x(t) = A.-coswt + Ag-sinwt
x(t) = —wA;-sinwt + wA; -+ cos wt

Furthermore we have to introduce initial conditions x(0) = g and x(0) = 2y and the classical momentum
p = m-x; (po = m - o) which then yields:

x(t) = A.-coswt + Ag-sinwt

p(t) = —mwA, -sinwt + pg - coswt

By comparing coefficients we get A. = xg and Ag = py/mw, which finally produces:

: Po .

x(t) = xo-:coswt + — - sinwt
mauw

/)(lf) = —mwxg-sinwt + pg - coswt

So we can stepwise

develop our solution

(m(f,)) " ( coswt L sinwt ) _ <.-m> from a starting point
—mw sin wt cos wt 0 Xo, Po

H.Schmickler, ex-CERN, 16
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Harmonic oscillator (3a/3)

A little reminder of classical mechanics:

Take a set of “canonical conjugate variables” (g, p in a single one
dimensional case)
g is called the generalized coordinate and p the generalized momentum
Construct a function H, which satisfies the dynamical equations of the
system:

dg . OH dp | 0H

H “= the Hamiltonian “ of the system is a constant of motion
(= H does not explicitly depend on t) .

The Hamiltonian of a system is the total energy of the system: H=T +V
(sum of potential and kinetic energy)

H = 23[?\’_‘_23[{}7’
Proof: i=1 a"’ ' . )
B Z 1 0x; api Z{ op; (_a\,> -

H. SChmlckIer ex- CERN Used x instead of q just to test your attention 17
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Harmonic oscillator (3b/3)

This leads immediately to the question:
What are canonically conjugate variables?

Short answer:

Several combinations are possible, the most relevant for us are

- X (space) and p (momentum)

- E (energy) and t (time).

We can learn most of the physics, when we construct quantities from
these canonical variables, which are constants of motion (energy,
action...)

* Hint to a more complete answer:

- Describe the particle motion by a Lagrange function of generalized coordinates and generalized
velocities and time.
- define an action variable and assume that nature is made such that the action between any two
points of particle motion is stationary

- This is fulfilled for Lagrange functions satisfying the Euler-Lagrange equation

- And this leads finally to the definition of generalized momenta instead of generalized velocities, the
definition of the Hamiltonian function and then to the two equations of motion as shown on the last

slide.
H.Schmickler, ex-CERN,
presented by F.Tecker, CERN
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Harmonic oscillator (3¢/3)

2, D% _
k xc+—=E
2m

H=T+V =

N =

Hamiltonian formalism to obtain the equations of motion:

& =222 orp=mx =m

St_x ap_m P= X =my o
ép _ . _ _OH _ e
St_p_ dx N -

-0.3 0.2 -0.1 0 0.1 0.2 0.3
x (m)

Instead of guessing a solution for x(t) we look at the trajectory of the system in
phase space.
In this simple case the Hamiltonian itself is the equation of an ellipse.

presented by F.Tecker, CERN



Outlook on Hamiltonian treatments

Increasing t

-03  -02 -0.1 0 0.1 0.2 0.3

x(m)

- In the example, the free parameter along the trajectory is time ( we are used to express the
space-coordinate and momentum as a function of time)
- This is fine for a linear one-dimensional pendulum, but it is not an adequate description for

transverse particle motion in an accelerator.
- we will choose soon “s”, the path length along the particle trajectory as free parameter
- Any linear motion of the particle between two points in phase space can be written as a matrix

. _(a b
transformation:  ()(s)= (C d) (X)(s0) 1
- In matrix annotation we define an action “J" as product J:=- (% )(s) ()(so)-
- Jis amotion invariant and describes also an ellipse in phase space. The area of the ellipse is 2n/

Why all this?

H.Schmickler, ex-CERN, 20
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Why “Hamiltonian” treatment (1/2)?

Why not just Newton’s law and Lorentz force?

Newton requires rectangular coordinates and time ; for curved trajectories
one needs to introduce “reaction forces”.

Several people use Hill's equation as starting point, but

- always needs an “Ansatz” for a (periodic) solution:

[2,.‘ | [2 E
i — — k() x =0 S F o i
d s~ PLS)~ d.5-

No real accelerator is built fully periodically

- Hill's equation follows directly out of a simplified Hamiltonian description
(later slide)

- no direct way to extend the treatment to non-linearities

Hamiltonian equations of motion are two systems of first order <->
Lagrangian treatment yields one equation of second order.
Hamiltonian equations use the canonical variables p and q,
Lagrangian description uses q and a"/a,: and t

P, q are independent, the others not.

H.Schmickler, ex-CERN, 21
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More Outlook on Hamiltonian treatments

From each point in an accelerator we can come to the next point by
applying a map (or in the linear case a matrix).

(z)(s)= M (7)(s0) Linear case: (;)(s)= (* Z) (%) (s0)

The map M must be symplectic €< energy conservation

The maps can be calculated from the Hamiltonian of the corresponding
accelerator component.

We “know” the Hamiltonian for each individual accelerator component
(drift, dipole, quadrupole...)

This way we generate a piecewise description of the accelerator instead of
trying to find a general continuous mathematical solution. This is ideal for
implementation in a computer code.

Unfortunately it needs some complex mathematical framework to be able
to derive the formalism on how to get symplectic maps from the
Hamiltonian.

This is dealt with in some detail later in this course.

The next 2 slides show 2 examples.

H.Schmickler, ex-CERN, 22
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Particle Motion through accelerator components

Drift space - for the enthusiastic

The exact Hamiltonian in two transverse dimensions and with a relative
momentum deviation ¢ is (full Hamiltonian with Z()?, 1)=0):

H=—\/(1+6)2 =P~y
The exact map for a drift space is now (do not use x and x' !):
Px

JA+R - g2 - B

new

% = x+L-

new

px = pX

Most of the time we use the linear approximation, which we get from simple

geometry: A drift space (one dimension only) of length L, starting at position s and
endingats + L

X(5+L)X'(s+L)

XX (s)

S s+L

The simplest description (1D, using x, x’) is (should be in 3D of course):

(A1) () - ()

H.Schmickler, ex-CERN,
presented by F.Tecker, CERN
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Map of a quadrupole

Starting from:

Jquad = —%(kx2 + p?‘) fis here the generator L * H

we finally have obtained:

¢Sy = cos (VKL)- x + %{sin(\//;L)-p
e:f:p = —Vksin(VKL)- x + cos(VkL)- p

=» Thick, focusing quadrupole, 1D !

Comes directly from the Hamiltonian from first principles, no need
to assume a solution of an equation of motion ...

Much more on this: Werner Herr, Non linear Dynamics I- llI,
advanced general CAS, for example Egham 2017

H.Schmickler, ex-CERN, 24
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Transverse Beam Dynamics

?7?7? high intensity beam described in 6D phase space??? No...

Starting point:

But: - Single particle in a single magnetic element
- complete decoupling of long., hor.& ver. motion
- particle with nominal momentum

My first accelerator:

- Single particle in many magnetic elements
- circular structure: synchrotron

- twiss parameters, orbit, tune...

Off-momentum particle:

- Dispersion

- Momentum compaction

- Chromaticity...a taste of non-linearities

Finally a beam of many particles (not too many!)
- emittance

- Liouville’s theorem

- adiabatic damping and radiation damping

presented by F.Tecker, CERN



Another aspect of Hamiltonian treatment

So far we have been switching from time-dependent variables to s-dependent variables
without paying attention to it: In a linear 1 D motion this is a equivalent since s= vt

But if we want to describe motion transverse to a curved reference line,

we are better off using “s” as independent variable. At every moment we have
perpendicular to the tangent vector of the particle trajectory a transverse Cartesian
coordinate system.

-6 |-5 -4 -3 -2

26



Hamiltonian for a (ultra relativistic, i.e. y > 1, g = 1) particle in an
electro-magnetic field is given by (any textbook on Electrodynamics):

H(x. bl =& \/(ﬁ— eA(X, 1) + mic? + ed(X, 1) (ugly...)

where A(X, 1), ®(T,¢) are the vector and scalar potentials (i.e. the V)

Using canonical variables (2D"’) and the design path length s as

independent variable (bending field B, in y-plane) and no electric fields:

duetot — s kinematic duetot — s normalized

st T e S Y

i : - . Aoy
H=—(l+—)-\/(l+(§)3—p%.—p%+—+ i e s
P ' Top 2p° Bop

where p = VEZ/c2 — m?c? total momentum, 6 = (p — py)/po is relative
momentum deviation and A(x, y) (hormalized) longitudinal (along )
component of the vector potential.

" Only transverse fields now, skipping several steps (see e.g. S. Sheehy, CAS Budapest 2016)..

H.Schmickler, ex-CERN,
presented by F.Tecker, CERN
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Where are we now?

- we describe every element in the trajectory of a particle with the corresponding Hamiltonian.

- we describe the particle motion through an element by a matrix (map) multiplication onto its
phase-space vector.

- we generate more complex accelerator configurations by multiplying the maps of the induvial
elements.

- we have changed the coordinate system and describe now the trajectory of a particle as a
function of “s” and not of “t".

- But: we are still treating single particles in a single passage through an accelerator component.

What comes next?

- We show that Hill's equations come naturally out of the Hamiltonian formalism
- We look at transverse focusing...in particular a FODO lattice
- We look again and again at phase space diagrams.

H.Schmickler, ex-CERN, 28
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A first application - the simplest possible:
Keeping only the lower orders (focusing) and ¢ = 0 we have:

Byp & W

H -4 2
T A

Putting it into Hamilton’s equations (for x, ditto for y):

OH  dp, OH dx
Ox  ds op. ds i
it follows immediately:
% | Iy
— + ( ;- k1<s>> 3 =4 — + ki9)y = 0
dse o(8)- ds-

Hill’s equations are a direct consequence of Hamiltonian treatment
of EM fields to lower orders



Hamiltonians of some machine elements (3D)
In general for multipole n:

Bt D
2(1 + 0)

|
i = Re [(k, + ki) (x + iy)"™!]
|l +n

We get for some important types (hormal components %, only):

dipole: O . Pi + by
' o 202 2(1 + )
| /)2 A p2 =
. _ 2 2 CX i, Such a field y
quadrupole: H = zkl(-x = m=yeh 20+ o) (force) we need
for focusing X
| p> + p?
sextupole: H = §k3(x3 M & oy [ gl M

2(1 +06)

H.Schmickler, ex-CERN,
presented by F.Tecker, CERN
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—x5 P,% ¥ P%
0 2(1 +0)

uadrupole: : p‘ + p‘
9 P ] 2 2(1 + 0)

This means that we can construct a focusing circular accelerator based only on dipoles...
in particular when p is small.

This has been done in the 1950’s and it was called “ a weak focusing synchrotron”

dipole:

How about the vertical plane’? There are no dlpoles Or why do the particles not fall down?

H.Schmickler, ex-CERN, 31
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We need stronger focusing > quadrupoles

X « X
' o MfOC 4 §s=S
X Ja X )0 = ST 4

-
......
.
e,
.
a,
ey
.
.
"~
e
.....
L
.
ey

S O
cos(4/|K|s) sin(,/|K|s | | m
Mfoe = \/WS \/@ \/WS

Wi con ) ), gy

1
g = F >3] q ... focal length of the lens is much bigger than the length of the magnet
q

limes: lq —> 0 while keeping k lq = const

1 O
M =T 1
ol (== |
LS
Negative = focusing H.Schmickler, ex-CERN, 32
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The negative sign in the Hamiltonian makes the same
quadrupole defocusing in the other plane.

cosh \/EI \/|1?| sinh \/EI s=0

s=g51
Muge=| NBL 4 e N[/ . v
1/|K| sinh1/|K|I cosh4/|K|l ..............................................
....................... i \ ’
1
i = F > g ... focal length of the lens is much bigger than the length of the magnet

q

limes: Iq —> 0 while keeping k1 =const

1 O
M= 1
Positive = defocusing H.Schmickler, ex-CERN, 33
presented by F.Tecker, CERN



Consider an alternating sequence of focussing (F) and defocussing (D)
guadrupoles separated by a drift (O)

sample trajectory

F
‘ﬂ/\
g i o i N 8]
NJ/ N/g/elope

cell length

The transfer matrix of the basic FODO cell reads

-—
‘-.—"
—

1 o). LY1 oY, L) |l+= Ljl+—
A TAY e 1) | g L T
o of 4F2 )
H.Schmickler, ex-CERN, 34
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|

L
e

Transfer Matrix in 6-D

In order to calculate numbers one usually defines a FODO cell from the

middle of the first F-quadrupole up to the middle of the last F-quadrupole.

Hence the resulting transfer matrix looks a little different:

2
1 _ L
2f5

(L— 2ifp)
O

O
O
O

M= MQ(2f0) + Mp (L) - MQ(—fo) +Mp (L) - MQ(ZfO)

#(L + 2fo) 0
L= 0 0
0 =g
0 —gealCli - 2f5)
O O
O O

H.Schmickler, ex-CERN,
presented by F.Tecker, CERN
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HHHHHH

Let us consider the case L = 1m, fog = +/2m. Take a particle
with initial coordinates at the start of a FODO cell:

r=1mm,; p:=9, y=1mm, py=0

Now track the particle through 100 FODO cells by applying the
transfer matrix to the vector constructed from the
coordinates, and plot p; vs x, and py Vs y:

1 1t

0.5+ 1 0.5+
(")_‘ LY s, l‘")_. 'J'.. \.‘
e o ¢ D1 2 af )
Q:‘ oe .o-"‘... Q.>. ". /

¥ o
.ot
-0.5¢ 1 -0.5¢
1 1
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
X [mm] y [mm]

H.Schmickler, ex-CERN,
presented by F.Tecker, CERN
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More details on the lllustrating Example

0.5}

p, [107]
o
&
¥ 3

‘.\ /

-0.5¢

-1 -0.5 0 0.5 1
X [mm]

(—92) - (

H.Schmickler, ex-CERN,
presented by F.Tecker, CERN
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What happens if we repeat the exercise, but starting the
FODO cell at the center of the drift before the (horizontally)
defocusing quadrupole? Again, we plot ellipses, but this time,
they are tilted:

15} ' ' ' ' ' g 1.5}
1 1r
"\. ’/'
B 0.5} .', i 3 0.5t \.
) ¢ ) &
2 o = O g
> o ,'. Y %o, ’o‘
o .o' 5 i o - %,
-0_5—( ..',0.0' | 05! ’-..... )_
®essences et g "Wy *e 00000000
-1 L 1
-1.51, l 1 ‘ . , # -1.5¢, . , . 1 ‘ R
1.5 -1 -0.5 0 0.5 1 1.5 1.5 -1 -0.5 0 0.5 1 1.5
X [mm] y [mm]
H.Schmickler, ex-CERN, 38
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Evolution of the Phase Space Ellipse in a FODO Cell

1 ] {

L2 35 6
1 [2 (3 [4 5 | [6 [7
e N (RS (82| £ | | =

1 2 3 4 5 ‘ 6

) L | | T S S il

H.Schmickler, ex-CERN,
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Our first synchrotron

The previous example of 100 consecutive FODO cells describes very well a
regular transport line or a linac (in which we have switched off the cavities).

If we add dipoles into the driftspaces, the situation for the transverse particle
motion does not change (neglecting the weak focusing part).

So actually with the previous description we also describe a very simple
regular synchrotron.

The phase space ellipse we can compute provided we know the total transfer
map (matrix) M:

1=~ (5)(s0) () (s0+€) == () (s0) Mtot () (s, )

The phase space plots will look qualitatively the same as in the previous
case.

Definition: trajectory (single passage) or closed orbit (multiple passages):

Fix point of the transfer matrix...in our cases so far the “0” centre of all ellipses.

H.Schmickler, ex-CERN, 40
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Orbit Acquisition CA’)

Thu Oct I8 22:20:30 200%

: MON & COD

SPS_orbit —| =P8 _selection |.|_ |

""" Loading correct THISS file... File BSupercycle Help |

Roeading Twiss ft_inj_<v2001...
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AVERAGE =1
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[ J[= ] iz

Closed Orbit dp/p—offset shown
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[T
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SPS orbit | sPs_selection [ .[_|
File Supercycle Help |
SPS XOREBIT V9.01/2K+1 MDV. 42707 0.0069 — = —
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Predicted Correction Results 18/10/01 13:23:45
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0.0 Difference 112.0
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GLOBAL: mean = 0.017 RMS = 0.403 #pu =113
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0.0 Difference
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Courant — Snyder formalism / Twiss parameters

« Same beam dynamics

* Introduced in the late 50’s

« The classical way to parametrize the evolution of the phase
space ellipse along the accelerator

Basic concept of this formalism:

1) Write the transfer matrix in this form (2 dimensional case):

M=1cosu+S -Asinu

s (ol

2) M must be symplectic > fy — a? =1

3) Four parameters: a(s); B(s); y(s)and u(s), with one interrelation (2)
—> Three independent variables

4) Again, the preserved action variable J describes an ellipse in phase-space:
J = < (yx+ 2axp + fp?)

H.Schmickler, ex-CERN,
presented by F.Tecker, CERN
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T he Phase Space Ellipse
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P 5 (’7’;1?1172 -+ 2Cl;r’l?’p;r, -+ ,3;1?]);127) Area = 2wJ,
ALpI
slope = — =
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Example: Propagation of Twiss parameters along s between two focusing quadrupoles

Vi C? -25C  S* )\ (B,

lopH Y| o [€ S a| =|-cc' sC'+cs' -SS' || a,
x' x' . c s 5 5

' ¥ y C’ _28'Ct 8 Yo

S

And in Matrix-Annotation:

So

=(’; N> A=MT A, M
/

Bs = C*Bo >Qo + 5%y = .80"'52/[;0

/3 ‘ : beam waist: o =0

Dritt M = ((1) i)

LI CIAR ) ———

Using: By — a? =1

Starting from waist a =

0

1/ 0 oo /s,
45= (1))'</0B° ﬁo>'((1) 1= (/ﬁ ﬁo+iz/ﬁo)

H.Schmickler, ex-CERN, 46
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Interpretation of the Twiss parameters (1/2)

1) Horizontal and vertical beta function gy (s):

~ 4.3 Windows NT 4.0 version 8.23d] 0108706 _10.57.05

« Proportional to the square of the projection of the phase space
ellipse onto the space coordinate

* Focusing quadrupole - decreasing beta values

Although the shape of phase space changes along s, the rotation of the particle
on the phase space ellipse projected onto the space co-ordinate looks like an
harmonic oscillation with variable amplitude: called BETATRON-Oscillation

x(s) = const - /B(s) - cos{u(s) + ¢}

1t

0.5+

p, [109]

o

-0.5

H.Schmickler, ex-CERN, 47
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Interpretation of the Twiss parameters (2/2)

a indicates the rate of change of 3 along s
a zero at the extremes of beta (waist)

Phase Advance: Indication how much a
particle rotates in phase space when
advancing in s

H.Schmickler, ex-CERN, 48
presented by F.Tecker, CERN



The betatron tunes Qy v

Part of the most important parameters of a circular accelerator
The equivalent in a linac is called “phase advance per cell”
For a circular accelerator it is the phase advance over one turn

in each respective plane.

In large accelerators the betatron tunes are
large numbers (LHC ™ 65), i.e. the phase
space ellipse turns about 65 times in one
machine turn.

We measure the tune by exciting transverse
oscillations and by spectral analysis of the
motion observed with one pickup.

This way we measure the fractional part of
the tune; often called gy y

-———

77
’/ﬁ/',

-

N am——

dipole perturbation
tune~ integer

Integer tunes (fractional part= 0)
lead to resonant infinite growth of
particle motion even in case of
only small disturbances.

H.Schmickler, ex-CERN,

presented by F.Tecker, CERN
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Importance of betatron tunes

If we include vertical as well as horizontal motion, then we find
that resonances occur when the tunes satisfy:

MgVy + Mmyly = ¢, ,
The couple (Qy,Qy ) is called the
working point of the accelerator.

The order of the resonance is |mgz| 4+ |my]|. Below: tune measurement
example from LEP

where mg;, my and € are integers.

>59.35 T T

59.34

TTTTrT]

59.33Fx

59.32

Sottinasfiinin = ACTIAL SE 1IN

U
-——
-

13/18/93 08:51:48

59.31

59.3

59.20P <

59.28

59.27

59.26

1611 0. 168;
5?00 0 15111 dy 0. 01113
ersus tune

s9osZil i liviili il N \ )
23,25 64.06 64.27 64.08 64.20 643 64.31 64.32 64.33 64.34 64.35

(a) Full tune diagram (b) Zoom around LHC Q working points
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Slides on “off-momentum” particles in a synchrotron

What happens: A particle with a

Tra>ectory with >0

o 5
momentum deviation § = ?p >0

gets bent less in a dipole.

Trajectory for 3>0

* In a weakly focusing synchrotron it would just
settle to another circular orbit with a bigger
diameter

* In an alternate gradient synchrotron it is more
complicated: The focusing/defocusing is also
dependent on the momentum, so the resulting
orbit follows the optics of the accelerator.

Reference trajectory

w5 Windo\:‘r NT4;0 \'(I'fi?ll‘ 8..'.’3{{] - : : 09/08/06 0'9.31.13 1.10=
& B™ B S
4.04 \ : | 1.05
3.5
+1.00
3.0
-0.95
2.5
+0.90
2.0
0.85
L5
1.0 N ot +0.80
030007 07 06 0% T0 IZ 17 I8 I3 ( 3).00""’
s(m
&pe =0
Table name = TWISS

H.Schmickler, ex-CERN,
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Measurement example

HERA Standard Orbit

This gives also an example of an
orbit measurement.

e = - Maschine : HERA-p | Erstopen WL197 MX
Orbit [_-,E’ Ref Mittelwert RMS wert Energle 39.73 Ablage (mm) [ 0.348 - -
[closed ot~ ~| [ scratcnt [ Wlfxhor| 0000 258 \ :‘U"r“N :;‘i Status 0K More on thIS aga'n RJOI"IeS (BI)
hpidOn Ep=39.726 Zivert.[ 0001 0893 ‘ Machine  hpi40n B7¢ | 107.7/.00
Jan 28 15:30:16 2004 2004-01-26 15:29:12 dplp [@pipaus| [0110 || [geladen] hpidOn
Closed Orbit -+
FEC Betriebsmode Setze! il Orbit->OpticServer,
’ Closed Orbit /I Trig ‘ | Standig [injMode | [iRein | Less ] tmallesen | Berei hl‘ Save Orbit | ‘

RA D on Orbit
dedlicated energy change of the stored beam HERA Dispersion Orbi

2 closed orbit is moved fo a
dispersions trajectory ' ' :

:D(S)*a_p

Il]!!ll!?[]!!!!!]!!!Il..li____

- = - 5 2
7 Orbit rb-Ref " Ref Mmelwen RMS-wert Energie 39.73 Ablage (mm) [ 2.46
[Closed orhit ]| [Scratchs | || %7 hor [ 20538 [ 23572 || Swom A Status [ wrong tu

1 1
Z fvert. l -.0008 .7820 : i B/e | 128.3 /6.
hpidOn Ep = 39.746 Machine  hpid0n
I I SChI | "Ckl e I@QX@GERN »2006-02-08 23:07:15 dp/p Aus | -1.482 [geladen]  hpidOn 529ase [ iE

presented by F.Tecker, CERN




Momentum compaction factor

If a particle is slightly shifted in momentum it
will have a different orbit and the orbit
p length is different.

The “momentum compaction factor” is
© PP defined as:

dL/L
o
p

<> _means that
the average is

1 D, (S) With p=ec in _ <Dx)m considered over
ae = Zj So straight sections Ae = R the bending
C p(s) we get: magnet only

Typical numbers: a, ~ 1073... 107%; %7/, ~ 1073 > AL/, ~ 107°...1077

- Much more on this in long. dynamics (F. Tecker).

H.Schmickler, ex-CERN, 53
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Finally: a beam

We focus on “bunched” beams, i.e. many (10 ") particles bunched
together longitudinally (much more on this in the RF classes).

From the generation of the beams the particles have transversally a
spread in their original position and momentum.

Science & Technology KCEMIISIS &, ' [yywmes | S
W@ Facilities Council W SR

8 uA - u
o s I Pepperpot Emittance Extraction

w  Emittance profiles

6 uA
10 _
- X 14 uA ;f,
E - 37
x o J |
- /’ ,,’/ 13 pA 2
-10
1 pA 3
-15
1-rms beam diameter = 22.4 mm g
4-rms emittance 1.02 pi-mm-mrad H
-20 0 pA 3
-30 -10 0 10 20 30 . . 5
(mm) Pepperpot image spots: hole
y positions (blue) and beam spots (red) )
Source: ISODAR (Isotope at rest , , '
. 3/10/07 Simon Jolly, Imperial College 9
experiment) '
H.Schmickler, ex-CERN, o4
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A beam (bunch): Motion of individual particles
(1/4)

=
T

Generate 10000 particle as a Gaussian distributionin x and p,

For illustration mark 3 particle in colors red, magenta and yellow
The average (center of charge) is indicated as cyan cross

Make some turns (100 turns with 3 degrees phase advance par turn)

H.Schmickler, ex-CERN, 55
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A beam (bunch): Motion of individual particles
(2/4)

turn O turn 10 turn 53 turn 100
2 -
0 _.*.......,:"._‘ — . |...‘_'1:~,_r"1.- ..|..;,;:"-.\.; J
— TR {0 100
2
Trajectory in x over 100 turns

Individual particles perform betatron oscillations (incoherently!), the whole
beam is “quiet”. No coherent betatron motion.

H.Schmickler, ex-CERN,
presented by F.Tecker, CERN
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A beam (bunch): Motion of individual particles
(3/4)

« The whole bunch receives (at injection) a transverse kick
(additional momentum q) of 2 units
« Tracing over 100 turns as before

H.Schmickler, ex-CERN, 57
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A beam (bunch): Motion of individual particles
(4/4)

b b bos s

Turn O Turn 10 Turn 53 Turn
100

o
T

o
T

The incoherent motion of the particles remains the same, but this time the
center of charge also moves (cyan curve). The beam beforms a betatron

oscillation. H.Schmickler, ex-CERN, 58
presented by F.Tecker, CERN



Liouville’s Theorem (1/2)

1. All particle rotate in phase space with the same angular velocity (in the linear case)

2. All particle advance on their ellipse of constant action
3. All constant action ellipses transform the same way by advancing in “s”

Physically, a symplectic transfer
Area, A= |e1 X e map conserves phase space

) €1

volumes when the map is applied.

= > This is Liouville's theorem, and is a
g property of charged particles
6’1‘62 moving in electromagnetic fields, in

Area, A’=le1 xlehl the absence of radiation.

X

- Since volumes in phase space are preserved, (1)-(3) means That the whole

beam phase space density distribution transforms the same way as the
individual constant action ellipses of individual particles.

H.Schmickler, ex-CERN, 59
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Liouville’s Theorem (2/2)

—> Since the action ] of a particle is constant and the phase space area A
covered by the action ellipse is A = 2nJ , we can represent the whole beam in
phase space by an ellipse with a surface = 2rn(J) *

—> all equations for the propagation of the phase space ellipse apply equally
for the whole beam

1! In case we talk about a single particle, the ellipse we draw is “empty” and any particle
moves from one point to another; if we consider a beam, the ellipse is full of particles!!!

There are several different definitions of the emittance ¢, also different
normalization factors. This depends on the accelerator type, but the above
definition describes best the physics.
Another often used definition is called RMS emittance
e = const * [{(x?)(p?) — (xp)?] or &= const * [(xz)(x’z) — (xx')?]
attention: the first definition describes well the physics, the second

describes what we eventually can measure
H.Schmickler, ex-CERN, 60
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Remarks

1. We have already identified the action as a preserved
quantity in a conservative system < -
the emittance of a particle beam is preserved in a
conservative beam line.

2. The sentence above is often quoted as Liouville's
theorem, but this is incorrect. Liouville’s theorem
describes the preservation of phase space volumes,
the preservation of the phase space of a beam is then
just results from the Hamiltonian description.

3. We can identify the constant in the previous equation:

x(s) = e - YB(s) - cos{u(s) + ¢}

H.Schmickler, ex-CERN, 61
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More on beam emittance

The reference momentum increases during acceleration
PO = ﬂoyomc - P1 = ﬁlylmc (B, y relativistic parameters)
we can show: BoYo€o = P1 Y1€1
So the transverse emittances scale with the product gy

For this reason we define;:

normalized emittance ¢y: = fye and we call € the geometric emittance

The “shrinking” of the transverse emittance during acceleration is called
“adiabatic damping” (only & = const * [(x?){x'*) — (xx")?] scales with energy)

Other ways to influence the emittance (advanced subjects):
- make it bigger by error (injection errors....)
- make it smaller by cooling (stochastic cooling; electron-cooling....)

Not to be confused with:
Radiation damping = Reduction in emittance due to the emission of
photons as synchrotron radiation

H.Schmickler, ex-CERN, 62
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What do we normally measure from the phase-space ellipse?

Attention! The standard 2 D image of a
synchrotron light based beam image is
NOT a phase space measurement

(x)d

7000

6000—

5000}

4000

3000~

2000

1000

.5chmickler, ex-CERN,

prese

ented by

At a given location in the
accelerator we can measure the
position of the particles, normally
it is difficult to measure the
angle..so we measure the
projection of the phase space
ellipse onto the space dimension:
—~>called a profile monitor

Example:
'SPS.BWS.41677.H _ROT'

T

) —
0 2000

F.Tecker, CERN



A first taste of non-linearities (1/6)

« So far we have completely neglected the longitudinal plane
 Still, we will not couple the motion in the longitudinal and transverse plane
(advanced course), but we need to consider

“off momentum particles” with a longitudinal momentum%9 *+ 0.
0

« We already defined the Dispersion function, which describes the change in orbit
 Now we look at what happens to the focusing in the quadrupoles:

H.Schmickler, ex-CERN, 66
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A first taste of non-linearities (2/6)

* Due to the change in focusing strength of the quadrupoles with varying
momentum, particles have different betatron-tunes:

* Is this bad? : Yes, the working point gets a “working blob”

« We need to correct. How?
i) Inserting a magnetic element where we have dispersion (this separates in
space particles with lower and higher momenta
i) Having there a “quadrupole”, for which the strength grows for larger distances

from the centre: a sextupole

Dp~
)

Dp_

—= )

D)

—<{)
D
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A first taste of non-linearities (3/6)

We will have a high price to pay for this chromaticity correction!
= we have introduced the first non-linear element into our accelerator

The map M (no longer a matrix) of a single sextupole represents a “kick”
in the transverse momentum:

X e X T — i
x' s_ x') Px > px—akgLa}Q

We choose a fixed value k,L = - 600 m~? and we construct phase
space portraits after repeated application of the map.

We vary the phase advance per turn (fractional part of the tune) from

0.2 -2mr to0.5 - 21

H.Schmickler, ex-CERN, 68
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A first taste of non-linearities (4/6)

e = 0.202 % 2ﬁ ez = 0.252 x 27«
" 3 it
& g
me 0 me 0
pr = 0.330 x 27
. A
] b
. 0 3 - . i
X (mm) —— .::‘
g N
jiz = 0.402 x 27 pz = 0.490 X 27 B° )
3 3 :
-3
o © i
-3 -3
0 3 i3 0 3
X (mm)_




A first taste of non-linearities (6/6)
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Linear Imperfections

Up to now we have constructed an alternate —gradient focusing synchrotron
We have a well chosen working point

We have corrected chromaticity

(We still cannot accelerate! - see F. Tecker (long. Dynamics)

We assume:

- All magnetic elements have the calculated field strength and field quality

- All magnetic elements are in the right place and powered with the right polarity
Reality tells us:

- Magnets have field errors, have other multipole components, have time varying
fields due to ripple in the connected power converter

- Magnets are wrongly mounted with horizontal and/or vertical offsets, rotations
or tilts

These effects influence:

- the beta functions and phase advance around the ring (implicitly the tunes)

- the closed orbit

- the coupling between horizontal and vertical motion

We need to diagnose and correct: Strong interaction between beam
measurements and corrections (see also R.Jones BDI talks)

H.Schmickler, ex-CERN, 71
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Dipole Errors

error

effect correction

strength (k)

change excitation current,

change in deflection
replace magnet

lateral shift

none

tilt

additional vertical deflection |corrector dipole magnet

e e e aa a

D

D e R e

»»»»»»»»»»»»»»»»»»»»»»

H.Schmickler, ex-CERN,
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Quadrupole Errors

. Y, -
/ | |
Talyg 4§ 4§ Ny
/ / | \
/l 4 4 .‘ [ . Y
AN
7 [
I R R R LN
Corr s/ 0 LA NN
A A A7 N NN
YN N A e

Note that F, = —kx and f, = ky making horizontal
dynamics totally decoupled from vertical.
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Quadrupole Errors 2/2

Error type

effect on beam

correction(s)

strength

Change in focusing,
“beta-beating”

Change excitation current,
Repair/Replace magnet

Lateral shift

Extra dipole kick

Excitation of a corrector
dipole magnet

tilt

Coupling of the beam
motion in the two planes

Excitation of a additional
“skewed quadrupoles (45°)
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Beta-beating (1/2)

98| | O 0 B |

I .III. IIIL .Ill. o

- H I

W

F

|

’- I

i

ﬂ

W

Uy

i

I

|

(-

i

\

|

b

F

I

|

By —
Byﬂ = -

i

t/:

Longitudinal location [m]

H.Schmickler, ex-CERN,

presented by F.Tecker, CERN

40 60 80 100 120 140 160



Beta-beating (2/2)
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Quadrupole Errors 3/3

Any tilted quadrupole
is seen as a normal
quadrupole plus
another quadrupole
tilted by 459. (skew
quad)

Note that in a skew
quad

Fyx = ksy and F, = Kex
produce coupling
between the x and y
planes

Additional skew quads
in an accelerator are
used to compensate

H.Schmickler, ex-CERN, coupling 77
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Sextupole errors (1/2)

Last not least

/8

H.Schmickler, ex-CERN,
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Last not least: Sextupole errors (2/2)

Error type

effect on beam

correction(s)

strength

Change in chromaticity
correction, beta-beating

Change excitation current,
Repair/Replace magnet

Lateral shift

Extra quadrupole and skew
quadrupole, beat-beating,
tune change, coupling

Compensation with
guadrupoles and skew
guadrupoles, realignment

tilt

Error in the chromaticity

correction

Excitation of a additional
“skewed sextupoles (45°)

H.Schmickler, ex-CERN,
presented by F.Tecker, CERN

A horizontally
(vertically)
displaced
sextupole is seen
as a centred
sextupole plus an
offset quadrupole
(skew
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Last not least: Collective effects

Collective effects:
= Summary term for all effects when the coulomb force of the particles in a bunch
can no longer be neglected; in other words when there are too many particles...

We distinguish:
i) self interaction of the particles within a bunch:

1) space charge effects
2) Intra beam scattering
3) Touschek scattering

leads to emittance growth and particle loss

ii) Interaction of the particles with the vacuum wall
—>concept of impedance of vacuum system

leads to instabilities of single bunches and multiple bunches

iii) Interaction of with particles from other counter-rotating beam
- beam-beam effects (- more later this school)

H.Schmickler, ex-CERN, 80
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Space-charge Forces

In the rest frame of a bunch of charged particles, the bunch will expand
rapidly (in the absence of external forces) because of the Coulomb repulsion

between the particles.
The electric field around a single particle of charge ¢ at rest is a radial field:

me & L
dre, r

Applying a Lorentz boost along the z axis, with relativistic factor y, the field
becomes:

q i i o @ » g 4 %

X

= 47[80 (x2 +y2 +}/2Z2)3/2 2 47[80 (xz +y2 +7222f/2 g 472'80 (x2 +y2 +}/222)3/2

For large ¥ the field is strongly suppressed, and falls rapidly away from z = 0.
In other words, the electric field exists only in a plane perpendicular to the
direction of the particle.

H.Schmickler, ex-CERN, 81
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Space Charge: Scaling with energy

Example Coulomb field: (a charge moving with constant speed)

¥=1 i |

Recall from
relativity

ﬁ In rest frame purely electrostatic forces

ﬁ In moving frame E transformed and B appears

Electrical field : repulsive force between two charges of equal polarity
Magnetic field: attractive force between two parallel currents

after some work; o " el i

F=—"_[1\[4)— =
' 27T6050( b )aQ 2megBc v a?

- space charge diminishes with 1/),2 scaling

—> each particle source immediately followed by a linac or RFQ for

acceleration
H.Schmickler, ex-CERN,
presented by F.Tecker, CERN
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Space Charge Tune Shift

The tune spread from space-charge forces for particles in a Gaussian bunch
of N, particles and rms bunch length o is given by:

R 2 f p,
: Al 3/2 7 3
(27[ ) O-;ﬂ 7/ G_\‘ G.\‘ T O-_\‘

)ds

where the integral extends around the entire circumference of the ring.

Since every particle in the bunch experiences a different tune shift, it is not
possible to compensate the tune spread as one could for a coherent tune
shift (for example, by adjusting quadrupole strengths).

Note that the tune spread gets larger for:
« larger bunch charges
» shorter bunches
» larger beta functions
* |lower beam energy (very strong scaling!)
» larger circumference

« smaller beam sizes
H.Schmickler, ex-CERN, 33
presented by F.Tecker, CERN
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“footprint”
of particles
with space
charge
tune shift.

The effect
dramaticall
y reduces
at higher
energies

84



Intrabeam Scattering

Particles within a bunch can collide with each other as they perform betatron
and synchrotron oscillations. The collisions lead to a redistribution of the
momenta within the bunch, and hence to a change in the emittances.

If a collision results in the transfer of transverse to longitudinal momentum at
a location where the dispersion is non-zero, the result (after many scattering
events) can be an increase in both transverse and longitudinal emittance.

X
A

| .
"

H.Schmickler, ex-CERN,
presented by F.Tecker, CERN
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Touscheck effect

The Touschek effect is related to intrabeam scattering, but refers to
scattering events in which there is a large transfer of momentum from the
transverse to the longitudinal planes. IBS refers to multiple small-angle

scattering; the Touschek effect refers to single large-angle scattering events.

X

If the change in longitudinal momentum is large enough, the energy

deviation of one or both particles can be outside the energy acceptance of

the ring, and the particles will be lost from the beam.
H.Schmickler, ex-CERN,

presented by F.Tecker, CERN
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Interaction of beam with vacuum

chamber
Resistive wall effect: ——— -
Finite conductivity - S
Narrow-band resonators: _ |_| o
Cavity-like objects - — Tl - -
Broad-band resonators: - — e
Tapers, other non-resonant S . s

structures

H.Schmickler, ex-CERN,
presented by F.Tecker, CERN
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Bunch in a conducting pipe with sudden
change

H.Schmickler, ex-CERN,
presented by F.Tecker, CERN
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All together

L

H.Schmickler, ex-CERN, 89
presented by F.Tecker, CERN



Achavity (t)

\ / \/ o L
- - - - - = - - - — = = —=
turn 1 turn 2
H.Schmickler, ex-CERN, 90
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Impedance

Impedance

V(t) = Zy(w)I cos(wt) — Z;(w)] sin(wt)

1

Zr(w) =R ——
14 Q ()

2

Qw —w?
/\/ Zi(w) = —R wrj 2\ 2
1 4 Q2 (“’w;‘j’r)

I = I cos(wt)

The real (resistive) part dissipates energy, the imaginary part creates instabilities

H.Schmickler, ex-CERN, 91
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Consequences of impedances

Energy loss on pipes = heating (important in a superconducting accelerator)
Tune shift

s

Z

narrow
resonances Broad
Band

| e EhOrLb
Sy, e

-
-
-

Single bunch instabilities (head-tail)

Multibunch instabilities
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Summary

1) Back to school: relativity, EM fields, magnets...

2) Hamiltonian and canonical variables = equations of motion + invariants; map-approach
3) Single particle in various magnetic elements...action as invariant

4) multiple elements; circular accelerator

5) Twiss parameters

6) Finally a beam: emittance and emittance preservation

7) A taste of non-linearities

8) Linear imperfections (and some corrections)

9) Collective effects



IN HIGH ENERGY PARTICLE
ACCELERATORS

Recommended reading:

* A. Wolski, Beam Dynamics in high energy particle accelerators,
Imperial College Press, ISBN 978-1-78326-277-9
e CAS proceedings and references therein



