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Accelerator Physics Primer
(mainly transverse plane)

H.Schmickler, ex-CERN
Presented by F.Tecker, CERN

Corresponds to the
expected Level of the “successful student” after 

the Introductory CAS
H.Schmickler, ex-CERN, 

presented by F.Tecker, CERN



The original title has been:

Accelerator Physics Primer and Need for SC Technologies

The real need for SC technologies does not need two hours to be 
explained (and will be explained in other presentations).

In short:

Higher Fields in dipole magnets  (2T à at least 9T)
Higher gradients and/or apertures in quadrupoles 

Much higher Q-factor for accelerating cavities 

Hence this presentation is a 2 hour recap of basic accelerator 
beam dynamics in order to understand the specifications of SC 
magnets.
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Basics (only 5 minutes): 
- Phenomenology of Special relativity
- simple examples of E-fields and B-fields, multipole expansion of B-fields

Linear Optics:
- Hamiltonian formalismà derivative of Hill’s equation from Hamiltonian

Hamiltonian in different Coordinate Systems, weak focusing

- linear optics: motion of single particle in a lattice, phase space plots
- trajectory, closed orbit, dispersion, weak focusing
- strong focusing, tune, chromaticity
- linear Imperfections, feed-down, coupling             

- “A taste” of non-linear dynamics

Liouville’s Theorem:
- Definition of emittance
- emittance preservation in conservative systems 
- filamentation due to non-linearities

Phenomenology of Collective Effects:
- Space Charge
- Touschek and Intrabeam Scattering
- Wakefields

Some Slides partially 
or fully taken from:

W. Herr
A. Wolski
R. Tomas
F. Tecker

A. Cianchi

Content



H.Schmickler, ex-CERN, 
presented by F.Tecker, CERN

4

1: Relativistic particles
Conservation of transverse momentum
à A moving object in its frame S’  has a mass  m’ = ⁄! "

Or  𝑚 = 𝛾𝑚# =
!!

$%("#)
$
≅ 𝑚#+ $

(
𝑚#𝑣((

$
)$

)  (approximation for small v)

Multiplied by 𝑐(:

𝑚𝑐( ≅ 𝑚#𝑐( +
1
2
𝑚#𝑣( = 𝑚#𝑐( + 𝑇

Interpretation:
à Total energy  𝐸 𝑖𝑠 𝐸 = 𝑚 0 𝑐(
à For small velocities the total energy is the sum of the kinetic energy plus the rest energy
à Particle at rest has rest energy 𝐸# = 𝑚# 0 𝑐(

à Always true (Einstein):  𝑬 = 𝒎 0 𝒄𝟐 = 𝜸𝒎𝟎 0 𝒄𝟐
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Relativistic momentum 𝑝 = 𝑚𝑣 = 𝛾𝑚#𝑣 = 𝛾𝑚#β𝑐

From page before (squared):

𝐸( = 𝑚(𝑐, = 𝛾(𝑚#
(𝑐, = ( $

$%-$
)𝑚#

(𝑐,= ( $%-
$.-$

$%-$
)𝑚#

(𝑐, = (1 + 𝛾(𝛽()𝑚#
(𝑐,

𝐸( = (𝑚#𝑐()( + (𝑝𝑐)( 𝐸
𝑐
= (𝑚#𝑐)( + 𝑝(

Or by introducing new units [E] = eV ; [p] =eV/c ; [m] = eV/c2 𝐸( = 𝑚#
( + 𝑝(

Due to the small rest 
mass electrons reach 

already almost the speed 
of light with relatively low 

kinetic energy, but protons 
only in the GeV range
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Electromagnetic Fields and forces onto charged particles

• Described by Maxwell’s equations and by the Lorentz-force
• Lots of mathematics, we will only “look” at the equations
• Only electric fields can transfer momentum to charged particles

à EM cavities for acceleration  à F. Tecker
• Magnetic fields are used to bend or focus the trajectory of charged particles

à construction of different types of accelerator magnets

• Also electrostatic forces can bend and focus beams; but since the forces are 
small we often neglect this part 
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But: for specific cases we also use electrostatic elements

quadrupole

Separators for electron and positron beams in the same vacuum chamber
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We need real magnets in an accelerator…not 
any arbitrary shapes of magnetic fields, but 
nicely classified field types by making reference 
to a multipole expansion of magnetic fields:
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Different Mathematical descriptions…a real pain?

We use differential equations, matrix – formalism, Hamiltonians, perturbation 
theory…

- Is there a right or wrong?
- Is it personal likings?
à Depending on the problem to solve (or the phenomenon to describe)

one mathematical tool is more adequate than the other.
à One should be aware of many of them in order to be able to choose 

the most adequate one.

In the following slides we will look at the very simple example of the classical 
spring-oscillator and describe it with a differential equation, with a matrix 
formalism and by using the Hamiltonian equations of motion.

But first: Definition of phase space and action functional
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Phase Space

This shows one of the three 
possible phase space projections

qx

px

- We are used to describe a particle by its 3D position (x,y,z in carth. Coordinates)
(blue arrows below)

- In order to get the dynamics of the system, we need to know the momentum
(px, py, pz); red arrows below

- In accelerators we describe a particle state as a 6D phase space point.
Below the projection into a 2 D phase space plot.
The points correspond to the x-position (qx) and the x component of the p-vector (px).



x

x’

x

px

Trace space Phase space

Warning: We often use the term phase space for the 6N dimensional space defined by 
x, x’ (space, angle), but this the “trace space” of the particles.
At constant energy phase space and trace space have similar physical interpretation

An important argument to use the trace space is that in praxis we can 
measure angles of particle trajectories, but it is very difficult to measure the 
momentum of a particle.
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Action functional S

Define action S:= !
!!

!"
𝑝 𝑑𝑞

“Stationary” action principle:= 
Nature chooses path from t1 to t2
such that the action integral is a 
minimum and stationary 

à we have a new invariant, 
which we can use to study the 
dynamics of the system

No immediate physical interpretation of S

Much more important: 
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Harmonic oscillator (1/3)

Solved by using a Differential equation
Starting from:
Newton’s Kraftansatz (F = m * a)   
and
Hook’s law (F = - k * x)

As at school we “guess” the solution:

And we find that with the angular frequency
We have found a description of the motion of 
our system. 
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Harmonic oscillator (2/3)

Solved by using a matrix formalism
The general solution to the previous differential equation is a 
linear combination of a cosine- and a sine-term.
So after an additional differentiation we get:

So we can stepwise 
develop our solution 
from a starting point 

x0, p0
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Harmonic oscillator (3a/3)
A little reminder of classical mechanics:
- Take a set of “canonical conjugate variables” (q, p in a single one 

dimensional case) 
- q is called the generalized coordinate and p the generalized momentum
- Construct a function H, which satisfies the dynamical equations of the 

system:

- H “= the Hamiltonian “ of the system is a constant of motion 
(= H does not explicitly depend on t) .

- The Hamiltonian of a system is the total energy of the system: H = T +V 
(sum of potential and kinetic energy)

𝜕𝑞
𝜕𝑡

= 𝑞̇ =
𝜕𝐻
𝜕𝑝

𝜕𝑝
𝜕𝑡

= 𝑝̇ = −
𝜕𝐻
𝜕𝑞

and 

Proof:

Used x instead of q just to test your attention
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Harmonic oscillator (3b/3)

This leads immediately to the question:
What are canonically conjugate variables?

Short answer:
Several combinations are possible, the most relevant for us are
- x (space) and p (momentum)  
- E (energy) and t (time).
We can learn most of the physics, when we construct quantities from 
these canonical variables, which are constants of motion (energy, 
action…)

* Hint to a more complete answer:
- Describe the particle motion by a Lagrange function of generalized coordinates and generalized 

velocities and time.
- define an action variable and assume that nature is made such that the action between any two 
points of particle motion is stationary

- This is fulfilled for Lagrange functions satisfying the Euler-Lagrange equation
- And this leads finally to the definition of generalized momenta instead of generalized velocities, the 

definition of the Hamiltonian function and then to the two equations of motion as shown on the last 
slide.
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Harmonic oscillator (3c/3)

Back to our Example: Mass-spring 
system
𝐻 = 𝑇 + 𝑉 = $

(
k 𝑥(+ /

$

(!
= E

Hamiltonian formalism to obtain the equations of motion:
01
02
= 𝑥̇ = 34

3/
=/
!

or p=m𝑥̇ = mv

0/
02
= 𝑝̇ = − 34

31
= -kx

This brings us back to the differential equation of solution 1:
𝐹 = 𝑚𝑎 = 𝑚𝑥̈ = - kx
With the well known “guessed” sinusoidal solution for x(t).

Instead of guessing a solution for x(t) we look at the trajectory of the system in 
phase space. 

In this simple case the Hamiltonian itself is the equation of an ellipse.
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Outlook on Hamiltonian treatments

𝑡 = 𝑡#

t = 𝑡# + ⁄5 ,
- In the example, the free parameter along the trajectory is time ( we are used to express the 

space-coordinate and momentum as a function of time)
- This is fine for a linear one-dimensional pendulum, but it is not an adequate description for 

transverse particle motion in an accelerator.
à we will choose soon “s”, the path length along the particle trajectory as free parameter

- Any linear motion of the particle between two points in phase space can be written as a matrix 
transformation:    %

%! (𝑠)= 𝑎 𝑏
𝑐 𝑑

%
%! (𝑠&)

- In matrix annotation we define an action “J” as product J:= '
(

%
%! (𝑠)  %

%! (𝑠&).
- J is a motion invariant and describes also an ellipse in phase space. The area of the ellipse is 2𝜋𝐽

Why all this?  This somewhat mathematically more complex approach allows us more complex systems.
The focus on motion invariants will give us access to important beam observables (ex: emittance)

Increasing t
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Why “Hamiltonian” treatment (1/2)?

• Why not just Newton’s law and Lorentz force?
Newton requires rectangular coordinates and time ; for curved trajectories 
one needs to introduce “reaction forces”.

• Several people use Hill’s equation as starting point, but
- always needs an “Ansatz” for a (periodic) solution: 

No real accelerator is built fully periodically
- Hill’s equation follows directly out of a simplified Hamiltonian description
(later slide)
- no direct way to extend the treatment to non-linearities

• Hamiltonian equations of motion are two systems of first order <-> 
Lagrangian treatment yields one equation of second order.

• Hamiltonian equations use the canonical variables p and q, 
Lagrangian description uses  q and A36

32 and t
p, q are independent, the others not.
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More Outlook on Hamiltonian treatments

• From each point in an accelerator we can come to the next point by 
applying a map (or in the linear case a matrix).

• The map M must be symplectic ß energy conservation
• The maps can be calculated from the Hamiltonian of the corresponding 

accelerator component.
• We “know” the Hamiltonian for each individual accelerator component

(drift, dipole, quadrupole…)
• This way we generate a piecewise description of the accelerator instead of 

trying to find a general continuous mathematical solution. This is ideal for 
implementation in a computer code.

• Unfortunately it needs some complex mathematical framework to be able 
to derive the formalism on how to get symplectic maps from the 
Hamiltonian.
This is dealt with in some detail later in this course.
The next 2 slides show 2 examples.

%
%! (𝑠)= M %

%! (𝑠&) %
%! (𝑠)= 𝑎 𝑏

𝑐 𝑑
%
%! (𝑠&)Linear case:
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Particle Motion through accelerator components

Most of the time we use the linear approximation, which we get from simple 
geometry:
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Map of a quadrupole

f is here the generator L * H

Much more on this: Werner Herr, Non linear Dynamics I- III,
advanced general CAS, for example Egham 2017
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Transverse Beam Dynamics
??? high intensity beam described in 6D phase space??? No…

Starting point:
- Single particle in a single magnetic element
- complete decoupling of long., hor.& ver. motion
- particle with nominal momentum

My first accelerator:
- Single particle in many magnetic elements
- circular structure: synchrotron
- twiss parameters, orbit, tune…

Off-momentum particle:
- Dispersion
- Momentum compaction
- Chromaticity…a taste of non-linearities

Finally a beam of many particles (not too many!)
- emittance
- Liouville’s theorem
- adiabatic damping and radiation damping

But: 
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Another aspect of  Hamiltonian treatment

So far we have been switching from time-dependent variables to s-dependent variables 
without paying attention to it:  In a linear 1 D motion this is a equivalent since s= vt
But if we want to describe motion transverse to a curved reference line, 
we are better off using “s” as independent variable. At every moment we have 
perpendicular to the tangent vector of the particle trajectory a transverse Cartesian 
coordinate system.
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Where are we now?

- we describe every element in the trajectory of a particle with the corresponding Hamiltonian.
- we describe the particle motion through an element by a matrix (map) multiplication onto its 
phase-space vector. 
- we generate more complex accelerator configurations by multiplying the maps of the induvial 
elements.
- we have changed the coordinate system and describe now the trajectory of a particle as a 
function of “s” and not of “t”.
- But: we are still treating single particles in a single passage through an accelerator component.

What comes next?

- We show that Hill’s equations come naturally out of the Hamiltonian formalism
- We look at transverse focusing…in particular a FODO lattice
- We look again and again at phase space diagrams.
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Such a field 
(force) we need 
for focusing
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Weak focusing from dipoles

This means that we can construct a focusing circular accelerator based only on dipoles…
in particular when ρ is small.
This has been done in the 1950’s and it was called “ a weak focusing synchrotron”

How about the vertical plane? There are no dipoles. Or why do the particles not fall down?
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We need stronger focusing àquadrupoles

01

*
s

foc
s x

x
M

x
x

÷÷
ø

ö
çç
è

æ
¢

=÷÷
ø

ö
çç
è

æ
¢

0

1cos( ) sin(

sin( ) cos( )

æ ö
ç ÷

= ç ÷
ç ÷ç ÷-è ø

foc

K s K s
KM

K K s K s

Negative = focusing
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1cosh sinh

sinh cosh

æ ö
ç ÷

= ç ÷
ç ÷ç ÷
è ø

defoc

K l K l
KM

K K l K l

The negative sign in the Hamiltonian makes the same 
quadrupole defocusing in the other plane.

Positive = defocusing
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Transfer Matrix in 6-D

In order to calculate numbers one usually defines a FODO cell from the 
middle of the first F-quadrupole up to the middle of the last F-quadrupole.

Hence the resulting transfer matrix looks a little different:

M= 𝑀7(2𝑓#) 0 𝑀8 𝐿 0 𝑀7(−𝑓#) 0 𝑀8 𝐿 0 𝑀7(2𝑓#) 
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More details on the Illustrating Example

1m
m

1
0

0.75
0.16

0
−.2

−.54
−.15
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Our first synchrotron

The previous example of 100 consecutive FODO cells describes very well a 
regular transport line or a linac (in which we have switched off the cavities).

If we add dipoles into the driftspaces, the situation for the transverse particle 
motion does not change (neglecting the weak focusing part).

So actually with the previous description we also describe a very simple 
regular synchrotron.
The phase space ellipse we can compute provided we know the total transfer 
map (matrix)  Mtot:

J=	1
2

3
3! (𝑠4)		

3
3! (𝑠4 + 𝐶) =

1
2

3
3! (𝑠4) Mtot

3
3! (𝑠4 )

The phase space plots will look qualitatively the same as in the previous 
case.

Definition: trajectory (single passage)  or closed orbit (multiple passages):
(1)

Fix point of the transfer matrix…in our cases so far the “0” centre of all ellipses.



Orbit Acquisition

Horizontal

Vertical

•This orbit excursion
 is too large!



Orbit Correction (Operator Panel)



Orbit Correction (Detail)
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Courant – Snyder formalism / Twiss parameters
• Same beam dynamics
• Introduced in the late 50’s 
• The classical way to parametrize the evolution of the phase 

space ellipse along the accelerator

Basic concept of this formalism:

1) Write the transfer matrix in this form (2 dimensional case):

𝑀 = 𝐼 𝑐𝑜𝑠𝜇 + 𝑆 * 𝐴 𝑠𝑖𝑛𝜇

I = 1 0
0 1 ; S = 0 1

−1 0 ;  A= 
𝛾 𝛼
𝛼 𝛽

2) M must be symplectic à 𝛽𝛾 − 𝛼! = 1

3) Four parameters: 𝛼 𝑠 ; 𝛽 𝑠 ; 𝛾 𝑠 𝑎𝑛𝑑 𝜇 𝑠 , with one interrelation (2)
à Three independent variables

4) Again, the preserved action variable J describes an ellipse in phase-space:
𝐽 = "

!
(	𝛾𝑥!+	2𝛼𝑥p	+	𝛽𝑝!)
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Example: Propagation of Twiss parameters along s between two focusing quadrupoles

2 2
0

0
2 2

0

2

2

æ ö- æ öæ ö
ç ÷ ç ÷ç ÷ ¢ ¢ ¢ ¢= - + - ×ç ÷ ç ÷ç ÷

ç ÷ ç ÷ç ÷¢ ¢ ¢ ¢-è ø è øè øs

C SC S
CC SC CS SS

C S C S

bb
a a
g g0'

*
' ss x

x
M

x
x

÷÷
ø

ö
çç
è

æ
=÷÷

ø

ö
çç
è

æ
÷÷
ø

ö
çç
è

æ
¢¢

=
SC
SC

M

Example: Beta function between two strong focusing 
quadrupoles

𝐴9"= 
𝛾 𝛼
𝛼 𝛽 à 𝐴9= 𝑀5 𝐴9" 𝑀

1 𝑠
0 1Drift M =

Starting from waist       𝛼 =
0

And in Matrix-Annotation:

𝐴9"=
𝛾# 𝛼#
𝛼# 𝛽#

= 𝛾# 0
0 𝛽#

= A$ -! 0
0 𝛽#

Using: 𝛽𝛾 − 𝛼( = 1

𝐴9 = 1 0
𝑠 1 0 A$ -! 0

0 𝛽#
0 1 𝑠
0 1 =

A$ -! ⁄9 -!

⁄9 -! 𝛽# + A9$ -!

𝛽9 = 𝛽# + A𝑠
(
𝛽#

𝛽9 = 𝐶(𝛽# - 2SC 𝛼# + 𝑆(𝛾# = 𝛽#+ A9$ -!
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Interpretation of the Twiss parameters (1/2)

1) Horizontal and vertical beta function 𝛽",$ 𝑠 :
• Proportional to the square of the projection of the phase space 

ellipse onto the space coordinate
• Focusing quadrupole à decreasing beta values

Although the shape of phase space changes along s, the rotation of the particle 
on the phase space ellipse projected onto the space co-ordinate looks like an 
harmonic oscillation with variable amplitude:   called BETATRON-Oscillation

𝑥 𝑠 = 𝑐𝑜𝑛𝑠𝑡 0 𝛽 𝑠 0 𝑐𝑜𝑠{𝜇 𝑠 + }𝜑
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𝛼 = − %
&
'(
')

α indicates the rate of change of β along s
α zero at the extremes of beta (waist)

𝜇 = ∫)%
)& %

(
ds Phase Advance: Indication how much a 

particle rotates in phase space when 
advancing in s

Of particular importance: Phase advance around a complete turn of a 
circular accelerator, called the betatron tune Q (H,V) of this accelerator

𝑄!,# = $
%&∫'

( $
)*,+

𝑑𝑠

Interpretation of the Twiss parameters (2/2)

2.)

3.)
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The betatron tunes 𝑄",$

• Part of the most important parameters of a circular accelerator
• The equivalent in a linac is called “phase advance per cell”
• For a circular accelerator it is the phase advance over one turn 

in each respective plane.
• In large accelerators the betatron tunes are 

large numbers (LHC ˜ 65), i.e. the phase 
space ellipse turns about 65 times in one 
machine turn.

• We measure the tune by exciting transverse 
oscillations and by spectral analysis of the 
motion observed with one pickup.
This way we measure the fractional part of 
the tune; often called 𝒒𝑯,𝑽

• Integer tunes (fractional part= 0) 
lead to resonant infinite growth of 
particle motion even in case of 
only small disturbances.
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Importance of betatron tunes

The couple (QH ,QV ) is called the 
working point of the accelerator.
Below: tune measurement 
example from LEP
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Slides on “off-momentum” particles in a synchrotron 

What happens: A particle with a 
momentum deviation 𝛿 = 0/

/
> 0 

gets bent less in a dipole.

• In a weakly focusing synchrotron it would just 
settle to another circular orbit with a bigger 
diameter

• In an alternate gradient synchrotron it is more 
complicated: The focusing/defocusing is also 
dependent on the momentum, so the resulting 
orbit follows the optics of the accelerator.

We describe the dispersion as a function of s as 𝐷 𝑠 ; 
the resulting position of a particle is thus simply:

𝑥0/= 𝑥#+ 𝐷 𝑠 0/
/

Typical values of D(s) are some meters, with,-
-

= 10./

the orbit deviation becomes millimeters



p
psDxD
¶

= *)(

Measurement example

HERA Standard Orbit

dedicated energy change of the stored beam
à closed orbit is moved to a  

dispersions trajectory

HERA Dispersion Orbit

This gives also an example of an 
orbit measurement.
More on this: again R.Jones (BI)
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Momentum compaction factor
If a particle is slightly shifted in momentum it 
will have a different orbit and the orbit 
length is different.

The “momentum compaction factor” is 
defined as:p+dp

p

𝛼) =
A𝑑𝐿
𝐿
A𝑑𝑝
𝑝

𝛼) =
𝑝
𝐿
𝑑𝐿
𝑑𝑝

Typical numbers: 𝛼) ≈ 10%:… 10%,; A∆/
/ ≈ 10%:à ⁄∆<

< ≈ 10%=…10%>

à Much more on this in long. dynamics (F. Tecker).
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Finally: a beam
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We focus on “bunched” beams, i.e. many (10 11) particles bunched 
together longitudinally (much more on this in the RF classes).

From the generation of the beams the particles have transversally a 
spread in their original position and momentum.

Source: ISODAR (Isotope at rest 
experiment)



A beam (bunch): Motion of individual particles 
(1/4)
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• Generate 10000 particle as a Gaussian distributionin x and px
• For illustration mark 3 particle in colors red, magenta and yellow
• The average (center of charge) is indicated as cyan cross
• Make some turns (100 turns with 3 degrees phase advance par turn)



A beam (bunch): Motion of individual particles 
(2/4)
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turn 0                        turn 10                        turn 53                        turn 100

Trajectory in x over 100 turns

Individual particles perform betatron oscillations (incoherently!), the whole 
beam is “quiet”. No coherent betatron motion.



A beam (bunch): Motion of individual particles 
(3/4)
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• The whole bunch receives (at injection) a transverse kick 
(additional momentum q) of 2 units

• Tracing over 100 turns as before



A beam (bunch): Motion of individual particles 
(4/4)
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Turn 0                           Turn 10                         Turn 53                      Turn 
100

The incoherent motion of the particles remains the same, but this time the 
center of charge also moves (cyan curve). The beam beforms a betatron
oscillation.



Liouville’s Theorem (1/2)
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1. All particle rotate in phase space with the same angular velocity (in the linear case)
2. All particle advance on their ellipse of constant action
3. All constant action ellipses transform the same way by advancing in “s”

à Since volumes in phase space are preserved, (1)-(3) means  That the whole 
beam phase space density distribution transforms the same way as the 

individual constant action ellipses of individual particles.



Liouville’s Theorem (2/2)
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We now define the emittance of a beam as the average action of all particles!

à Since the action J of a particle is constant and the phase space area A
covered by the action ellipse is 𝐴 = 2𝜋𝐽 , we can represent the whole beam in 
phase space by an ellipse with a surface = 2𝜋 𝐽 *

à all equations for the propagation of the phase space ellipse apply equally
for the whole beam
!!! In case we talk about a single particle, the ellipse we draw is “empty” and any particle 
moves from one point to another; if we consider a beam, the ellipse is full of particles!!!

There are several different definitions of the emittance ε, also different 
normalization factors. This depends on the accelerator type, but the above 
definition describes best the physics.

Another often used definition is called RMS emittance
𝜀 = 𝑐𝑜𝑛𝑠𝑡 ∗ [ 𝑥( 𝑝( − 𝑥𝑝 (] or 𝜀 = 𝑐𝑜𝑛𝑠𝑡 ∗ [ 𝑥( 𝑥?( − 𝑥𝑥? (]
attention: the first definition describes well the physics, the second 

describes  what we eventually can measure

*



Remarks
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1. We have already identified the action as a preserved 
quantity in a conservative system ß à
the emittance of a particle beam is preserved in a 
conservative beam line.

2. The sentence above is often quoted as Liouville’s
theorem, but this is incorrect. Liouville’s theorem 
describes the preservation of phase space volumes, 
the preservation of the phase space of a beam is then 
just results from the Hamiltonian description.

3. We can identify the constant in the previous equation:

𝑥 𝑠 = 𝜀 % 𝛽 𝑠 % 𝑐𝑜𝑠{𝜇 𝑠 + }𝜑



More on beam emittance
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The reference momentum increases during acceleration
𝑃# = 𝛽#𝛾#𝑚𝑐 → 𝑃$ = 𝛽$𝛾$𝑚𝑐 𝛽, 𝛾 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑖𝑠𝑡𝑖𝑐 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠

we can show:            𝛽#𝛾#𝜖# = 𝛽$ 𝛾$𝜖$
So the transverse emittances scale with the product 𝛽𝛾

For this reason we define:

Other ways to influence the emittance (advanced subjects):
- make it bigger by error (injection errors….)
- make it smaller by cooling (stochastic cooling; electron-cooling….)

Not to be confused with:
Radiation damping = Reduction in emittance due to the emission of 
photons as synchrotron radiation

normalized emittance 𝜀@: = 𝛽𝛾𝜀 and we call 𝜀 the geometric emittance
The “shrinking” of the transverse emittance during acceleration is called 
“adiabatic damping”       (only 𝜀 = 𝑐𝑜𝑛𝑠𝑡 ∗ [ 𝑥( 𝑥0( − 𝑥𝑥0 (] scales with energy)



What do we normally measure from the phase-space ellipse?

• At a given location in the 
accelerator we can measure the 
position of the particles, normally 
it is difficult to measure the 
angle…so we measure the 
projection of the phase space 
ellipse onto the space dimension:
àcalled a profile monitor

Attention! The standard 2 D image of a 
synchrotron light based beam image is 
NOT a phase space measurement
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A first taste of non-linearities (1/6)
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• So far we have completely neglected the longitudinal plane
• Still, we will not couple the motion in the longitudinal and transverse plane 

(advanced course), but we need to consider 
“off momentum particles” with a longitudinal momentum ∆/

/!
≠ 0.

• We already defined the Dispersion function, which describes the change in orbit
• Now we look at what happens to the focusing in the quadrupoles:



A first taste of non-linearities (2/6)
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• Due to the change in focusing strength of the quadrupoles with varying 
momentum, particles have different betatron-tunes:

• Definition: Chromaticity (H,V) := Dependence of tune on momentum
• ∆𝑄 = 𝑄? ∆/

/
or relative chromaticity ξ = 7?

7
• Is this bad? : Yes, the working point gets a “working blob”
• We need to correct. How?

i) Inserting a magnetic element where we have dispersion (this separates in 
space particles with lower and higher momenta
ii) Having there a “quadrupole”, for which the strength grows for larger distances 
from the centre: a sextupole



A first taste of non-linearities (3/6)
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We will have a high price to pay for this chromaticity correction!
à we have introduced the first non-linear element into our accelerator

The map M (no longer a matrix) of a single sextupole represents a “kick” 
in the transverse momentum:

0'
*

' ss x
x

M
x
x

÷÷
ø

ö
çç
è

æ
=÷÷

ø

ö
çç
è

æ

We choose a fixed value k2L = - 600 m-2  and  we construct phase 
space portraits after repeated application of the map.

We vary the phase advance per turn (fractional part of the tune) from

0.2 0 2𝜋 𝑡𝑜 0.5 0 2 𝜋



A first taste of non-linearities (4/6)
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A first taste of non-linearities (6/6)
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Linear Imperfections
• Up to now we have constructed an alternate –gradient focusing synchrotron
• We have a well chosen working point
• We have corrected chromaticity
• (We still cannot accelerate!  à see F. Tecker (long. Dynamics)
• We assume: 

- All magnetic elements have the calculated field strength and field quality
- All magnetic elements are in the right place and powered with the right polarity

• Reality tells us:
- Magnets have field errors, have other multipole components, have time varying 
fields due to ripple in the connected power converter
- Magnets are wrongly mounted with horizontal and/or vertical offsets, rotations 
or tilts

• These effects influence:
- the beta functions and phase advance around the ring (implicitly the tunes)
- the closed orbit
- the coupling between horizontal and vertical motion
…

• We need to diagnose and correct: Strong interaction between beam 
measurements and corrections (see also R.Jones BDI talks)
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Dipole Errors
error effect correction

strength (k) change in deflection
change excitation current, 
replace magnet

lateral shift none
tilt additional vertical deflection corrector dipole magnet
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Quadrupole Errors 
(1/2)
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Quadrupole Errors 2/2
Error type effect on beam  correction(s) 
strength Change in focusing, 

“beta-beating” 
Change excitation current, 
Repair/Replace magnet 

Lateral shift Extra dipole kick Excitation of a corrector 
dipole magnet 

tilt Coupling of the beam 
motion in the two planes 

Excitation of a additional 
“skewed quadrupoles (450) 

 



H.Schmickler, ex-CERN, 
presented by F.Tecker, CERN

75

Beta-beating (1/2)
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Beta-beating (2/2)
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Quadrupole Errors 3/3
Any tilted quadrupole 
is seen as a normal 
quadrupole plus 
another quadrupole 
tilted by 450. (skew 
quad)

Note that in a skew 
quad 
Fx = ksy and Fy = ksx
produce coupling 
between the x and y 
planes

Additional skew quads 
in an accelerator are 
used to compensate 
coupling
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Last not least: Sextupole errors (1/2)



H.Schmickler, ex-CERN, 
presented by F.Tecker, CERN

79

Last not least: Sextupole errors (2/2)

Error type effect on beam  correction(s) 
strength Change in chromaticity 

correction, beta-beating 
Change excitation current, 
Repair/Replace magnet 

Lateral shift Extra quadrupole and skew 
quadrupole, beat-beating, 
tune change, coupling 

Compensation with 
quadrupoles and skew 
quadrupoles, realignment 

tilt Error in the chromaticity 
correction 

Excitation of a additional 
“skewed sextupoles (450) 

 

A horizontally 
(vertically) 
displaced 
sextupole is seen 
as a centred 
sextupole plus an 
offset quadrupole 
(skew 
quadrupole)
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Last not least: Collective effects

Collective effects:
= Summary term for all effects when the coulomb force of the particles in a bunch 
can no longer be neglected; in other words when there are too many particles…

We distinguish:
i) self interaction of the particles within a bunch:

1) space charge effects
2) Intra beam scattering
3) Touschek scattering

leads to emittance growth and particle loss
ii) Interaction of the particles with the vacuum wall

àconcept of impedance of vacuum system
leads to instabilities of single bunches and multiple bunches
iii) Interaction of with particles from other counter-rotating beam

à beam-beam effects (à more later this school)

Most is very advanced matter à here only concepts and buzz-words
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Space-charge Forces
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Space Charge: Scaling with energy

Electrical field : repulsive force between two charges of equal polarity
Magnetic field: attractive force between two parallel currents
after some work: 

à space charge diminishes with A$ "$ scaling
à each particle source immediately followed by a linac or RFQ for 
acceleration

Recall from 
relativity
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Space Charge Tune Shift



H.Schmickler, ex-CERN, 
presented by F.Tecker, CERN

84

“footprint” 
of particles 
with space 
charge 
tune shift.

The effect 
dramaticall
y reduces 
at higher 
energies

Space 
charge 
always
defocusing
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Intrabeam Scattering
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Touscheck effect



Interaction of beam with vacuum 
chamber
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Bunch in a conducting pipe with sudden 
change
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All together
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beam
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R
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Impedance
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I = Î cos(!t)

Impedance

Zr(!) = R
1

1 +Q2
⇣

!2�!2
r

!r!

⌘2

Zi(!) = �R
Q!2�!2

r
!r!

1 +Q2
⇣

!2�!2
r

!r!

⌘2

V (t) = Zr(!)Î cos(!t)� Zi(!)Î sin(!t)

The real (resistive) part dissipates energy, the imaginary part creates instabilities 
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Consequences of impedances
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Energy loss on pipes à heating (important in a superconducting accelerator)
Tune shift

long bunch

short bunch

Broad
Band
Model

narrow
resonances

Single bunch instabilities (head-tail)

Multibunch instabilities 
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1) Back to school: relativity, EM fields, magnets…
2) Hamiltonian and canonical variables à equations of motion + invariants; map-approach
3) Single particle in various magnetic elements…action as invariant
4) multiple elements; circular accelerator
5) Twiss parameters
6) Finally a beam: emittance and emittance preservation
7) A taste of non-linearities
8) Linear imperfections (and some corrections)
9) Collective effects

Summary



Recommended reading:
• A. Wolski, Beam Dynamics in high energy particle accelerators,

Imperial College Press, ISBN 978-1-78326-277-9
• CAS proceedings and references therein


