

International Accelerator School: Superconducting Science and Technology for Particle Accelerators

Superconducting Magnets 2

GianLuca Sabbi Lawrence Berkeley National Laboratory IAS 2023 July 16-17, 2023

<u>Goal</u>: **10x integrated luminosity enabled by new IR magnets** first application of Nb₃Sn technology in a high energy collider

IR Quadrupole Parameter Optimization

Nb₃Sn technology enables HL-LHC luminosity target

Nb₃Sn Technology

Brittle material:

- Severe damage in cabling/winding
- React coils after winding
- New coil materials (insulation, parts)

Sensitivity to stress/strain:

- Epoxy impregnation
- New mechanical designs

Aluminum-shell based support structure

- Mechanical design of Nb₃Sn magnets needs to satisfy stringent constraints
 - Full support without exceeding stress limits (150-200 MPa cold)
- Selected structure is based on aluminum shell over iron yoke, preloaded with pressurized bladders and interference keys
 - Minimize and precisely control warm pre-load
 - Increase to full pre-load during cool-down, avoiding overshoot

HL-LHC IR Quad production is underway

PARAMETER	Unit	MQXFA/B
Coil aperture	mm	150
Magnetic length	m	4.2/7.15
N. of layers		2
N. of turns Inner-Outer layer		22-28
Operation temperature	K	1.9
Nominal gradient	T/m	132.6
Nominal current	kA	16.5
Peak field at nominal current	Т	11.4
Stored energy at nominal	MJ/m	1.2
Peak field at ultimate current	Т	12.4

Cross-section of cold mass and cryostat

Common design for US (Q1/Q3) and CERN (Q2a/b) Quadrupoles except for different length (4.2+4.2 m vs 7.15 m)

Field Quality Table

				Triplet fi	eld quality	v version 4	- May 20	0 2015 - R	_{ref} =50 mm	n			1			
	Straight part])	Ends	Integral					
			System	natic		•	Uncertainty		Random		2		Q1/Q3		Q2a/b	
Normal	Geometric	Ass. & cool	Saturation	Persistent	Injection	High Field	Injection	High Field	Injection	High Field	Conn. Side	Non conn. Side	Injection	High Field	Injection	High Field
					an Ca		ta da						• 500	12	ar an	
3	0.000	0.000	0.000	0.000	0.000	0.000	0.820	0.820	0.820	0.820			0.000	0.000	0.000	0.000
4	0.000	0.000	0.000	0.000	0.000	0.000	0.570	0.570	0.570	0.570			0.000	0.000	0.000	0.000
5	0.000	0.000	0.000	0.000	0.000	0.000	0.420	0.420	0.420	0.420			0.000	0.000	0.000	0.000
6	-2.200	0.900	0.660	-20.000	-21.300	-0.640	1.100	1.100	1.100	1.100	8.943	-0.025	-16.692	0.323	-18.593	-0.075
7	0.000	0.000	0.000	0.000	0.000	0.000	0.190	0.190	0.190	0.190			0.000	0.000	0.000	0.000
8	0.000	0.000	0.000	0.000	0.000	0.000	0.130	0.130	0.130	0.130			0.000	0.000	0.000	0.000
9	0.000	0.000	0.000	0.000	0.000	0.000	0.070	0.070	0.070	0.070			0.000	0.000	0.000	0.000
10	-0.110	0.000	0.000	4.000	3.890	-0.110	0.200	0.200	0.200	0.200	-0.189	-0.821	3.119	-0.175	3.437	-0.148
11	0.000	0.000	0.000	0.000	0.000	0.000	0.026	0.026	0.026	0.026			0.000	0.000	0.000	0.000
12	0.000	0.000	0.000	0.000	0.000	0.000	0.018	0.018	0.018	0.018			0.000	0.000	0.000	0.000
13	0.000	0.000	0.000	0.000	0.000	0.000	0.009	0.009	0.009	0.009			0.000	0.000	0.000	0.000
14	-0.790	0.000	-0.080	1.000	0.210	-0.870	0.023	0.023	0.023	0.023	-0.545	-1.083	0.033	-0.856	0.106	-0.862
Skew																
3	Perfecteren	101/010101	N27/27/27	74.0 C 214.4		11271270701	P		1	arrive stern	1		i memerene	1211 2121 21		112010-1210-1
3	0.000	0.000	0.000	0.000	0.000	0.000	0.650	0.650	0.650	0.650			0.000	0.000	0.000	0.000
4	0.000	0.000	0.000	0.000	0.000	0.000	0.650	0.650	0.650	0.650			0.000	0.000	0.000	0.000
5	0.000	0.000	0.000	0.000	0.000	0.000	0.430	0.430	0.430	0.430			0.000	0.000	0.000	0.000
6	0.000	0.000	0.000	0.000	0.000	0.000	0.310	0.310	0.310	0.310	2.209		0.210	0.210	0.124	0.124
7	0.000	0.000	0.000	0.000	0.000	0.000	0.190	0.190	0.190	0.190			0.000	0.000	0.000	0.000
8	0.000	0.000	0.000	0.000	0.000	0.000	0.110	0.110	0.110	0.110			0.000	0.000	0.000	0.000
9	0.000	0.000	0.000	0.000	0.000	0.000	0.080	0.080	0.080	0.080			0.000	0.000	0.000	0.000
10	0.000	0.000	0.000	0.000	0.000	0.000	0.040	0.040	0.040	0.040	0.065		0.006	0.006	0.004	0.004
11	0.000	0.000	0.000	0.000	0.000	0.000	0.026	0.026	0.026	0.026			0.000	0.000	0.000	0.000
12	0.000	0.000	0.000	0.000	0.000	0.000	0.014	0.014	0.014	0.014			0.000	0.000	0.000	0.000
13	0.000	0.000	0.000	0.000	0.000	0.000	0.010	0.010	0.010	0.010			0.000	0.000	0.000	0.000
14	0.000	0.000	0.000	0.000	0.000	0.000	0.005	0.005	0.005	0.005	-0.222		-0.021	-0.021	-0.012	-0.012
	Magne	etic length stra	aight part		Q1/Q3	3.459	Q2a/b	6.409	Mag. I	len. Ends	0.400	0.341				

Reference: Hi Lumi LHC Work Package 3 - Magnets for Insertion Regions https://espace.cern.ch/HiLumi/WP3/SitePages/Home.aspx

Field Error Measurements and Analysis

Quench Protection with CLIQ

125

100

75 50 y [mm] -50 -75 -100-125 -100 -75 -50 -25 0 25 50 75 100 125 x [mm] 120 25 Inter-filament coupling loss [Wcm⁻³] 80 20 40 15 y [mm] -40 -80 -120 -120 -80 -40 40 80 120 0 x [mm]

Power is deposited by inter-filament coupling currents induced by the rapid current oscillations

$$\tau_{\rm if} = \frac{\mu_0}{2} \left(\frac{l_{\rm f}}{2\pi}\right)^2 \frac{1}{\rho_{\rm eff}}$$

100µm

Test Instrumentation

New diagnostics are being developed to complement the traditional approach based on voltage taps

M. Marchevsky, USPAS 2022

Block-coil High Field Dipole Design

HD2 Design:

- ✓ High Je (no spacers/structure in coil)
 - Efficient design for small aperture
- ✓ Only two co-wound layers/pole
 - Optimize performance and cost
- ✓ Concentrates stress in low-field region
- ? Internal bore support (vs. Roman arch)
- ? Flared ends (vs. saddle ends)

Magnetic Field (a) $B_0 = 16 T$

Coil Stress (a) $B_0 = 16 T$

Bore structural support

Twin-Aperture Collider Dipoles

Horizontal layout has good magnetic and mechanical efficiency

Asymmetric coil design for smaller spacing between apertures

Short sample performance		SS	B ₁ ^{ss}		
Temperature	4.5K	1.9K	4.5K	1.9K	
Single aperture (HD2)	18.0	20.1	15.52	17.15	
Double aperture (2HD)	17.8	19.7	15.49	17.12	

Past improvements of Nb₃Sn J_c

- HEP conductor development program resulted in +3T field potential (4.5K)
- Achieved performance consistent with improvements in conductor properties
- Optimal design choices driven by accelerator requirements and production cost

Potential for further improvements

- <u>Principle</u>: increase of Nb_3Sn pinning force at high field through grain refinement
- Promising results in short samples (X. Xu et al, Appl. Phys. Lett. 104 082602):

 $J_c(12 \text{ T}, 4.2\text{K})$: from 3.5 kA/mm² @ 100+ nm (e.g. best HD2 wire) to 9.6 kA/mm² @ ~35 nm

• Extrapolation to HD2 & 13 nm grain size (G. Sabbi et al., IEEE-TAS 25 (3) 4001407):

Superconducting Accelerator Magnets

High Temperature Superconductors (HTS)

Accelerator-type coils with Bi-2212

- Significant J_c improvements with new high pressure heat treatment and powers
- RC-06 results (0.8 mm strand, 17-strand Rutherford cable, 2-layer, 6-turn/layer):
 - J_e 1365 A/mm² at 15 T (2xFCC spec); 1000 A/mm² at 27 T (1.3 GHz NMR)
- Two larger 11-turn coils (RC7-8) generated 4.5 T field in a shell-based structure

Zhang et al. SuST, 31 (2018) 105009 Jiang et al., IEEE TAS, 29 (2019), 6400405 Shen et al., arXiv preprint arXiv:1808.02864

REBCO tapes: the high field frontier

- REBCO tapes provide by far the best current densities at the highest field
- Enabling impressive progress in hybrid LTS/HTS superconducting solenoids
 - ➢ Highest field all superconducting user facility (32 T) − 12/2017
 - All-SC test achieves highest magnetic field on record (45.5 T) 2/2019
 - First commercial 1.2 GHz NMR (28.2T) system by Bruker 8/2019

Key technology: high current HS cables

- Goal: develop multi-kA HTS cables with low degradation from cabling, bending and stress, and low AC losses
- REBCO is strongly preferred to Bi-2212 in large systems due to lower projected cost and avoiding the challenging reaction

Conductor on Round Core (CORC)

Advanced Conductor Technologies LLC www.advancedconductor.com

Cable-in-groove

- <u>Concept</u>: place individual turns in grooved formers
- <u>Goals</u>:
 - More flexibility in the winding pattern, cable design, and coil grading
 - Internal structure to protect the conductor from force accumulation
- <u>Issues</u> to be addressed for application to high field magnets
 - Magnetic: engineering current density, quench propagation
 - Mechanical: pre-load transfer, or capability to operate without pre-load
 - Tooling/processes for reaction and impregnation; reliable insulation
 - Field quality: tolerances for cable insertion, module assembly/alignment

Racetrack

Helical Winding

CORC Wires in Helical Windings

- Basic concept: superposition of tilted solenoids to generate a dipole field (Meyer, NIM 1970)
- Windings can be further modulated to generate higher order multipoles and control the field in curved or tapered geometries

Two-layer dipole: 1.2 T at 4.2 K

Four-layer dipole: 2.9 T at 4.2 K

X. Wang et al. SuST (2018) 075002

Accelerator-type coils for ECR sources

$$\omega_{e} = \frac{e \cdot b}{m} = \omega_{rf}$$

$${f n_e}^{\infty} \ {f w_{rf}}^2$$
 ${f q_{opt}} \propto {f log} \ {f w}^3$

- Ion current scales as square of microwave frequency
- Confinement field scales linearly with frequency

45-56 GHz ECR magnets with Nb₃Sn

- Very favorable performance (current) scaling with square of frequency/field
- Main challenge is the sextupole coil fabrication and mechanical support
- Requires lower current (<1-2 kA) than typical in large accelerator applications
 - Single wire or small Rutherford cable but both require many layers
- Shell based structure is directly applicable with additional challenges
 - Asymmetric force distribution and sextupole-solenoid integration

45 GHz Design by IMP and LBNL

Medical applications: compact cyclotrons

- Strong reduction of cyclotron size and weight at higher field (1/B³)
 - Of particular benefit for installations in medical facilities
- Significant progress in compact (synchro)cyclotrons for proton therapy
 - > Up to 7 T with NbTi and 9 T with Nb_3Sn

 Higher field is possible from a magnet perspective, but there are challenges in beam physics and system integration

Potential opportunities in carbon therapy

• Consider potential benefits from "high field" technology in specific sub-systems: gantries, cryogenics, flux return coils etc.

Concluding Remarks

- Superconducting Accelerator Magnets are a very broad subject combining different disciplines from material science to magnetics, mechanical engineering, cryogenics, power electronics and related instrumentation and diagnostics
- Solid technological basis and exciting developments with many technical challenges, both near term and long term
- Progress in high field magnets requires a convergence of technical feasibility, performance benefits for the application and critical mass to support the R&D
- Several new technologies are reaching maturity, offering opportunities for new application