

International Accelerator School: Superconducting Science and Technology for Particle Accelerators

synchrotron

Superconducting Magnets 1

GianLuca Sabbi Lawrence Berkeley National Laboratory IAS 2023 July 16-17, 2023

GianLuca Sabbi, LBNL

Introduction

- Superconducting Accelerator Magnet development is a very broad subject combining different disciplines from material science to magnetics, mechanical engineering, cryogenics, power electronics and related instrumentation and diagnostics
- This short overview will focus on those aspects that are of more direct relevance to accelerator design, and less on magnet engineering details
- Reference to more extensive courses and literature are provided (next slide)
- We will also try to *minimize overlap with other classes at the IAS*:
 - Basics of Superconductivity
 - Type II Superconductors: critical fields and flux pinning
 - Accelerator Physics Primer
 - Field errors and their effect on the beam
 - Linear Optics Magnets
 - Magnetic Design: Coil and iron yoke contributions, End fields
 - Quench process
 - Cryostat Technology for Accelerators

References

US Courses:

- USPAS 2015: Superconducting Magnets for Particle Accelerators (P. Ferracin, S. Prestemon, E. Todesco) <u>https://indico.cern.ch/event/440690/?view=nicecompact</u>
- USPAS 2022: Superconducting Accelerator Magnets (P. Ferracin, S. M. Marchevsky, Prestemon, E. Todesco) <u>https://conferences.lbl.gov/event/979/</u>

CERN Courses:

- John Adams Institute Accelerator Courses: Magnet Design (A. Milanese): <u>https://indico.cern.ch/event/1101643</u>
- Masterclass Design of superconducting magnets for particle accelerators (E. Todesco) <u>https://indico.cern.ch/category/12408/</u>
- CERN Summer Student Lectures 2023: Accelerator Technology Challenges Magnet Design (S. Izquierdo Bermudez) <u>https://indico.cern.ch/event/1254879/</u>
- Upcoming! (November 2023): CAS School on Normal and Superconducting Magnets, St. Polten, Austria, <u>https://indico.cern.ch/event/1227234/</u>

<u>Books</u>: from classics to more recent publications

- Martin N. Wilson, "Superconducting Magnets" (1983)
- Fred M. Asner, "High Field Superconducting Magnets" (1999)
- K.-H. Mess, P. Schmuser, S. Wolff, "Superconducting accelerator magnets" (1996)
- S. Russenschuck, "Field computation for accelerator magnets" (2010)
- D. Schoerling and A. V. Zlobin, "Nb₃Sn Accelerator Magnets" (2019)

Presentation Outline

Part 1: fundamentals of superconducting accelerator magnet design

- Superconducting Accelerator Magnet Overview
- Practical Superconductors for Accelerator Magnets
- Wire and Cable Design
- Magnetic Design, margin and training
- Coil forces and stress
- Quench Protection

Part 2: advanced technologies and applications

- Recent progress in superconducting accelerator magnet development
 Selected topics and highlights in magnet design and fabrication
- Special Accelerator magnets
- Benefits of accelerator magnet development to broader applications in science, medicine and industry

Accelerator Magnet Development Overview

Practical Superconductors: Critical Surface

Operating space of practical Low-Temperature Superconductors (LTS) for magnet applications

Niobium-Titanium (NbTi)

- Ductile alloy
- Upper critical field (B_{C2}): ~15T
- Critical Temperature (T_c): ~10K
- Used in most projects to date

Niobium-Tin (*Nb*₃*Sn*)

- Brittle and strain sensitive
- Upper critical field (B_{C2}): ~28T
- Critical Temperature (T_c): ~18K
- In production for HL-LHC

High Temperature Superconductors

- MgB2, Bi-2212, YBCO
- Great potential with significant technology challenges

Conductor Properties and Design Space

Conductor Technologies

Material	NbTi	Nb ₃ Sn (Nb ₃ Al)	Bi-2212	YBCO
Max Field	10-11 T	16-17 T	Stress limited	Stress limited
Reaction	Ductile	∼675ºC in Air/Vacuum	~890ºC in O ₂ (±2ºC)	None
Wire axial compression	N/A	Reversible	Irreversible?	Reversible
Transverse stress	N/A	< 200 MPa	60 MPa?	> 150 MPa
Insulation	All	S/E Glass	Ceramic	All
Construction	G-10, stainless	Bronze/Titanium, Stainless	Super alloy	All
Quench propagation	>20m/s	~20 m/s	~0.05 m/s? (4.2 K, 8 T)	~0.01 m/s? (4.2 K, self- field)

Superconducting Wire Architecture

- The basic building block of an accelerator magnet is the superconducting wire
- Typical diameters in the range of 0.5-1.5 mm and continuous uniform lengths of 1-20 km
- Designed as a matrix of thin superconducting filaments embedded in pure copper

NbTi (LHC MB)

Nb₃Sn (LARP HQ)

Main drivers of the multi-filamentary wire architecture

Flux pinning

Instabilities due to redistribution of flux vortices ("flux-jumps") limit the current that can be carried as a unit

Field errors due to internal shielding "persistent" currents proportional to the SC filament diameter

During a quench, the copper matrix (briefly) provides a low resistance path for the magnet current

Rutherford Cables

Rutherford cables address several fundamental (and conflicting) magnet requirements:

- Provide high current-carrying capability (up to 10-20 kA) to limit magnet inductance and related voltages, in particular during a fast discharge in case of a quench (<1kV)
- ...while retaining sufficient flexibility and mechanical stability for coil winding
- ...and high compaction (~90%) with low J_c degradation for high coil-pack current densities
- ...and precise geometry (~10 μm) for accurate coil field quality and stress control
- ...and control of dynamic effects during a current ramp (strands are twisted and transposed)

They also offer some important practical advantages:

- Rectangular (or trapezoidal) shape provides effective management of coil internal forces/stress
- Large number of wires (strands) lower the continuous length required in wire production
- Capability to achieve a range of conductor characteristics from a given strand design

Superconducting Coils

• Typical accelerator coils windings have a long (1-15 m) straight section generating a transverse field, and two short end sections to complete each turn and transition to the next one

• Electrical insulation is paramount. Each turn is electrically insulated. Additional insulation is placed between coil layers, and around the entire coil to prevent shorts to the structure

Fiberglass braid/sleeve used in Nb3Sn magnets

- The effective current density is averaged across superconductor, copper stabilizer, internal components (wedges and spacers) and electrical insulation
- About 2 orders of magnitude higher than can be achieved in normal conducting coils

Shell-type coil design

- <u>Basic concept</u>: approximate a $cos(n\theta)$ current distribution around the aperture
- For $n=1: j(\theta)=j_0 \cos\theta$ generates a perfect dipole; n=2 generates a quadrupole etc.
- In practice, this current distribution is approximated using spacers (wedges) between turns, optimized to reduce deviations from the prescribed field

 In the magnet straight section, the 2D field can be expressed as a series of harmonics (already described in the "linear optics – magnets" presentation):

$$B_y(x,y) + iB_x(x,y) = \sum_{n=1}^{\infty} (B_n + iA_n) \left(\frac{x+iy}{r_0}\right)^{n-1}$$

Field Patterns from Harmonic Terms

Iron Yoke

The superconducting coil is usually surrounded by an iron yoke made of ferromagnetic steel

The iron yoke performs several essential functions:

- 1. Contribute to the field in the aperture. For a circular yoke that is not saturated (<2T) this contribution is linear and can be calculated with the "image currents" method
 - If the yoke is saturated (>2T) non-linear field errors are generated as a function of current: need to optimize geometry to minimize or balance these effects
- 2. Return the magnetic flux, limiting fringe field and coupling with surrounding elements
 - For a dipole, the required iron thickness is ~B/2 times the aperture radius
- 3. The yoke is often used as an integral component of the mechanical structure

Coil Field and Margin to Quench

- In order to maintain its superconducting state, the conductor must operate within the envelope defined by its critical surface
- Assuming that the temperature is set by the cryogenic system, as the magnet is energized, current density and field increase along the so-called "load line"
- The operating point along the load line is defined as the fraction of the operating current to the critical current, usually below 80-85% to provide sufficient margin

Coil Forces and Stress

- The combination of high field and current results in large electromagnetic forces acting on the superconducting coil as the magnet is energized
- Accumulated force is of the order of 100s of tons/m pointing outward
 - Radial force is linear with aperture and quadratic with field
 - Axial force scales with the square of both aperture and field
- Corresponding coil stress can reach 100-150 MPa (MN/m²) which can cause insulation damage and conductor degradation
- Any slippage under friction will release thermal energy causing a quench
- Mechanical design approach: pre-compress the coil before energization

Electromagnetic force pattern in a dipole magnet

Quench Training: LARP SQ Test

IIII

BERKELEY LAE

P. Ferracin et al., LBNL

Geometric Field Quality

Design errors:

- Caused by deviations from the ideal current distribution
- Only a subset of harmonic components are "allowed" by symmetry
- Need to balance field quality against complexity (e.g. number of wedges)

Fabrication errors:

- Effect of fabrication tolerances can be estimated by Monte Carlo simulations
- Conductor positioning within ±50 μm is usually achieved in cosθ magnet production
- Larger errors may be expected for first (only) units or other design/fabrication methods

Coil End Optimization: Winding Pattern

End windings often require the bending patterns at the limit of the cable mechanical stability:

- Individual strands raising above the cable surface cause potential damage and electrical shorts
- If the cable completely loses its shape ("roping") it may result in loss of the entire unit length

Main objective of the mechanical optimization is minimizing the cable strain energy function:

$$E = \frac{1}{2} \int_0^{s_{\rm c}} (f_{\tau} \,\tau(s)^2 + f_{\kappa_{\rm n}} \,\kappa_{\rm n}(s)^2 + f_{\kappa_{\rm g}} \,\kappa_{\rm g}(s)^2) \,\mathrm{d}s$$

 $\tau, \kappa_{n}, \kappa_{g}$ are the curvatures (torsion, normal and geodesic) to be optimized along the cable length *s* $f_{\tau}, f_{\kappa_{n}}, f_{\kappa_{g}}$ are the mechanical properties (flexural rigidities) for the specific cable parameters

J. Cook, ANL; R. Bossert, J. Brandt (FNAL)

Coil End Optimization: Field Quality

- Integrated harmonics can be corrected with spacers but total magnet length will increase
- For higher order harmonics, need to split blocks
- Feedback from AP will provide guidance

Coil End Optimization: Peak Field

- Coil field may increase by 10-20% in the ends
- Can be offset by reducing or eliminate iron yoke over the ends, but this can affect the mechanical performance and increase the fringe field
- Additional margin from increased block spacing or splitting blocks

Quench Protection

- A quench occurs when a portion of the coil transitions to the normal conducting state due to local degradation or heat release (conductor motion under forces, radiation etc.)
- The magnet stored energy is quickly dissipated in the resistive area, leading to temperature and pressure increase, current variations, resistive/inductive voltage, thermal/EM forces
- Natural propagation of the resistive area is generally too slow to distribute the energy over a sufficiently large volume to avoid damage
- Therefore, quench propagation needs to be accelerated by heating the coil and/or the magnet has to be quickly discharged into an external dump

Advanced Protection Techniques

- More effective protection can broaden the design space in critical areas:
 - Reducing the copper fraction from 60% to 40% equals a 50% increase of J_c
 - Increasing limits on stored energy density leads to more efficient designs
 - Limits on the inductance may constrain the cable design to sub-optimal choices, or even eliminate design approaches requiring smaller cables
- Balancing quench heater efficiency vs. electrical integrity has proven problematic
- The "Coupling Loss Induced Quench" (CLIQ) system developed by CERN is having a transformative impact on design options: take full advantage of this opportunity

Summary: Accelerator Magnet Design

Main drivers: address stringent beam physics requirements and minimize cost

<u>Technical requirements:</u>

- Aperture
- Field quality (geometric, saturation, persistent currents, eddy currents)
- Mechanical support
- Quench protection

Efficiency/cost requirements:

- Limit power consumption use SC magnets
- Minimize conductor & structure cost/size Powering of many magnets in series

LHC

- Achieve high operational field Lifetime under radiation load Fabrication in (very) Long Lengths
- Selection of magnet layout and accelerator parameters is closely coupled (e.g. optimal coil layout depends on required aperture and field quality)
 Magnet R&D goal is to inform the overall accelerator optimization process

•

- Initial design simplifications for fast feedback on fundamental issues
- But eventually, all accelerator quality issues need to be addressed