Basic crab cavities

ISA2003 20230716 Yoshiyuki Morita KEK

Basic crab cavities

- Luminosity of the collider accelerators and related topics
- RF cavities and parameters
- Pill box type crab cavities, mainly developed for KEKB
- Compact crab cavities, mainly developed for LHC

Colliding beams

- We consider the luminosity of collider accelerators
- Luminosity is one of the most important parameters
- Number of physics interactions (events) per second = L x σ
 - L: Luminosity
 - σ: Cross section
- L has to be increased to obtain high event rate

 $\frac{dN_{ev}}{d} = L \cdot \sigma$

- Calculate luminosity
 - Head on collision
 - Flat beams with uniform distribution
- # of events for a particle with a cross section of σ
- # of events for N+ particles
- If those collisions occur f times per second
- Luminosity for flat beams

$$Lz \qquad S = L_x \times L_y$$

$$N_{ev} = N_{-}\sigma/S$$

$$N_{ev} = N_+ N_- \sigma / S$$

$$\frac{dN_{ev}}{dt} = fN_+N_-\sigma/S$$

$$L = \frac{N_+ N_-}{L_x L_y} f$$

- In case of Gaussian distribution we have to modify the previous equation
 - Same σx, σy for both ^N beams

$$L = \frac{N_+ N_-}{L_x L_y} f \qquad \begin{array}{c} L_x \to dx \\ L_y \to dy \end{array}$$

$$N_{+} \to N_{+} \frac{1}{\sqrt{2\pi}\sigma_{x+}} e^{-\frac{x^{2}}{2\sigma_{x+}^{2}}} \frac{1}{\sqrt{2\pi}\sigma_{y+}} e^{-\frac{y^{2}}{2\sigma_{y+}^{2}}} dx dy$$

$$N_{-} \to N_{-} \frac{1}{\sqrt{2\pi}\sigma_{x-}} e^{-\frac{x^{2}}{2\sigma_{x-}^{2}}} \frac{1}{\sqrt{2\pi}\sigma_{y-}} e^{-\frac{y^{2}}{2\sigma_{y-}^{2}}} dx dy$$

$$L = \frac{N_+ N_-}{4\pi\sigma_x \sigma_y} f$$

- In case of Gaussian distribution
 - Same σx, σy
 - But the other beam has offset Δx

tor
$$N_{-} \to N_{-} \frac{1}{\sqrt{2\pi}\sigma_{x-}} e^{-\frac{(x-\Delta x)^{2}}{2\sigma_{x-}^{2}}} \frac{1}{\sqrt{2\pi}\sigma_{y-}} e^{-\frac{(x-\Delta x)^{2}}{2\sigma_{x-}^{2}}} e^{-\frac{(x-\Delta x)^{2}}{2\sigma_{x-}^{2}}}} e^{-\frac{(x-\Delta x)^{2}}{2\sigma_{x-}^{2}}} e^{-\frac{(x-\Delta x)^{2}}{2\sigma_{x-}^{2}}} e^{-\frac{(x-\Delta x)^{2}}{2\sigma_{x-}^{2}}} e^{-\frac{(x-\Delta x)^{2}}{2\sigma_{x-}^{2}}}} e^{-\frac{(x-\Delta x)^{2}}{2\sigma_{x-}^{2}}} e^{-\frac{(x-\Delta x)^{2}}{2\sigma_{x-}^{2}}}} e^{-\frac{(x-\Delta x)^{2}}{2\sigma_{x-}^{2}}} e^{-\frac{(x-\Delta x)^{2}}{2\sigma_{x-}^{2}}} e^{-\frac{(x-\Delta x)^{2}}{2\sigma_{x-}^{2}}}} e^{-\frac{(x-\Delta x)^{2}}{2\sigma_{x-}^{2}}}} e^{-\frac{(x-\Delta x)^{2}}{2\sigma_{x-}^{2}}} e^{-\frac{(x-\Delta x)^{2}}{2\sigma_{x-}^{2}}}} e^{-\frac{(x-\Delta x)^{2}}}} e^{-\frac{(x-\Delta x)^{2}}{2\sigma_{x-}^{2}}}} e^{-\frac{(x-\Delta x)^{2}}{2\sigma_{x-}^{2}}}} e^{-\frac{(x-\Delta x)^{2}}{2\sigma_{x-}^{2}}}} e^{-\frac{(x-\Delta x)^{2}}{2\sigma_{x-}^{2}}}} e^{-\frac{(x-\Delta x)^{2}}}} e^{-\frac{(x-\Delta x)^{2}}}} e^{-\frac{(x-\Delta x)^{2}}}} e^{-\frac{(x-\Delta x)^{2}}}} e^$$

 $\frac{1}{2\sigma_{y-}^2}$

dx dy

$$L = \frac{N_+ N_-}{4\pi\sigma_x \sigma_y} f$$

Reduction factor

$$R_{\Delta x} = e^{-\frac{\Delta x^2}{4\sigma_x^2}}$$

- In case of Gaussian distribution
 - Different σx, σy
 - Define Σx and Σy

$$L = \frac{N_+ N_-}{2\pi \Sigma_x \Sigma_y} f$$

$$\Sigma_{\chi} = \sqrt{\sigma_{\chi+}^2 + \sigma_{\chi-}^2}$$

$$\Sigma_y = \sqrt{\sigma_{y+}^2 + \sigma_{y-}^2}$$

Finite angle crossing

- To increase luminosity
 - Increase beam bunches
 - When bunches increased parasitic collisions occur
- To avoid parasitic collisions
 - Beam crossing with finite angle: θc
 - Make beam separation simple
 - Reduction of luminosity
 - Geometrical reduction factor R_L
 - May introduce coupling between synchrotorn and betatron oscillations in circular colliders

Crab crossing

- Bunch rotation at the IP
 - Horizontal kick at the bunch head
 - Horizontal kick at the bunch tail but opposite direction
 - No kick at the bunch center
- Bunch rotates so that it collides head-on at IP
 - Crab crossing
- Crab cavity kick the bunch with a phase advance of π/2
- Another crab cavity kicks back the bunch after IP

Required kick voltage

- Kick voltage given to the bunch head
 - L: length from the bunch center
 - c: speed of light
 - ΔV : kick voltage
 - No kick to the bunch center
 - Same kick voltage to the bunch tail, but opposite direction

$$\Delta V_x = V_x \sin \omega_{RF} \Delta t \sim V_x \omega_{RF} \frac{L}{c}$$

Required kick voltage

- Kick angle, x'
- Offset at the IP
 - m12: transfer matrix component of the betatron oscillation
 - Δφ: phase advance (sin∆φ=1)
- Bunch rotation angle at the IP
 - Half crossing angle
- Required kick voltage

 $e \Delta V x$ $x' = \frac{e \Delta V_x}{E} = \frac{\Delta V_x}{E/e}$ Λx $\Delta x = m_{12} x' = \sqrt{\beta_{crab} \beta_{IP}} \sin \Delta \phi x'$ $\tan \theta = \frac{\Delta x}{L} = \sqrt{\beta_{crab}\beta_{IP}} \frac{V_x \omega_{RF}}{cE/e}$ $V_{\chi} = \frac{cE/e}{\sqrt{\beta_{crah}\beta_{IP}}\omega_{RF}}\theta$

Single crab cavity scheme

- One crab cavity in the ring
- The beam wiggles in the whole ring
- Cavity location can be chosen any where in the ring
 - near the existing cryogenic facility
- KEKB applied this scheme
 - Two crab cavities fabricated and installed in the HER and LER ring
 - The location is 1 km away from the IP, where a cryogenic facility was operating for the SRF accelerating cavities
 - Great cost reduction

Wiggling if no kickback

Required kick voltage in single crab scheme

 $M_{(s2,s1)} =$

Beam-beam parameter

- Beam-beam kick
 - Electromagnetic force of electrons kicks positrons
 - Kicking force is approximately proportional to the distance from the center
- Tune shift
 - This force is like a quadrupole magnet
 - Tune shifts due to this kick
 - Δμ: ξ parameter
 - Beam-beam parameter
- Beam-beam limit
 - If we increase N, σ increases
 - Beam-beam parameter has a limit
 - Bean-bean limit
 - Luminosity has a limit
- Beam-beam simulation predicted ξ could be increased more than twice in the crab crossing

$$\xi_{x,y\pm} = \frac{r_e N_{\mp}}{2\pi\gamma_{\pm}} \frac{\beta_{x,y\pm}}{\sigma_{x,y\mp}\sigma_{y\mp}}$$

$$L = \frac{N_{\pm}}{2r_e} f \gamma_{\pm} \frac{\xi_{y\pm}}{\beta_{y\pm}}$$

 r_e : Classical electron radius γ : Lorentz factor

RF cavity

- Particle acceleration longitudinally or transversely
- Time varying electric and magnetic fields in a cavity
 - Resonate with the resonant frequency
 - Create large electric and magnetic fields
 - Those fields accelerate charged particles

RF cavity

- Resonant frequency and electro magnetic fields can be obtained from;
 - Maxell's equations
 - Boundary conditions
- Electro-magnetic fields decay in time due to the heating loss on the boundary
 - The ratio of the loss in one cycle Pc to stored energy U characterizes cavity performance
 - Quality factor: Q=ωU/Pc

$$DivB = 0$$
$$DivE = 0$$
$$RotE = -\frac{\partial B}{\partial t}$$
$$RotH = \frac{\partial D}{\partial t}$$

$$Q = \frac{\omega U}{P_c}$$

Beam acceleration

- Lorentz force
 - Charged particle with speed of light enters into a cavity
 - Charged particles obtain acceleration: Lorentz force
- We obtain the accelerating voltage when the cavity has longitudinal electric field
- Accelerating voltage Vc
 - The EM fields vary in time
 - We have to take the travelling time of a particle into account
 - Transit time factor: T
 - The ratio of Vc to the maximum voltage

$$F = e(E + v \times B)$$

$$F_z = eE_z$$

$$V_c = \int_0^d E_z e^{i\omega t} dz = \int_0^d E_z e^{ikz} dz$$

$$V_c = \left| \int_0^d E_z e^{ikz} dz \right|$$

$$T = \frac{\left|\int_0^d E_z e^{ikz} dz\right|}{\left|\int_0^d E_z dz\right|}$$

Shunt impedance

- Shunt impedance
 - Important parameter
 - Ratio of Vc² to Pc
 - Efficiency of acceleration
 - In the lumped circuit theory; R=Vc²/Pc/2
- R/Q
 - Another important parameter

 $\frac{V_c^2}{P_c}$

 $=\frac{V_c^2}{\omega U}$ R/Q

Direction of acceleration

- Longitudinal acceleration
 - Beam acceleration
- Transverse acceleration
 - Beam deflection
 - Whole bunch deflects
 - Bunch rotation
 - Bunch head deflects
 - Bunch tail deflects, but in the opposite direction
 - Bunch center does not deflect
 - Crabbing

How to kick the beam

- Lorentz force
 - Particle with v=c along z-axis
- The force accelerates particles
 - Z-comp: acceleration
 - X-comp: horizontal kick
 - Y-comp: vertical kick
- Horizontal kick voltage

$$F = e(E + v \times B)$$
$$v = ce_z = (0, 0, c)$$

$$F_x = e(E_x - cB_y)$$

$$F_y = e(E_x + cB_x)$$

$$F_z = eE_z$$

$$V_x = \int_0^d (E_x - cB_y) e^{ikz} \, dz$$

Panofsky-Wenzel theorem

- Maxwell's eq: $RotE = -\frac{\partial B}{\partial t} = -i\omega B \Rightarrow B_y = \pi \frac{i}{\omega} \left(\frac{\partial E_x}{\partial z} \frac{\partial E_z}{\partial x} \right)$
- V_x can be given by E only

$$V_{x} = \int_{0}^{d} \left(E_{x} - i \frac{c}{\omega} \frac{\partial E_{x}}{\partial z} + i \frac{c}{\omega} \frac{\partial E_{z}}{\partial x} \right) e^{ikz} dz$$

- Note that the first 2 terms are combined
 - Its integral vanish at the boundary because Ex=o
- V_x is given by the gradient of V_z
 - The TE mode does not kick the particle because Ez=0

$$(E_x - i\frac{c}{\omega}\frac{\partial E_x}{\partial z})e^{ikz} = -i\frac{c}{\omega}\frac{d}{dz}(E_x e^{ikz})$$

$$V_x = \int_0^d i \frac{c}{\omega} \frac{\partial E_z}{\partial x} e^{ikz} dz = \frac{i}{k} \frac{\partial V_z}{\partial x}$$

Kick voltage

- Kick voltage
 - Horizontal kick
 - Vertical kick
- Shunt impedance
 - T stands for x or y

• R/Q

 $=\frac{i}{k}\frac{\partial V_z}{\partial x}$ $\frac{i}{k}\frac{\partial V_z}{\partial y}$ V_y $\frac{V_T^2}{P_c}$ $=\frac{V_T^2}{\omega U}$ R/Q

Voltage stability

- Voltage error: ΔV
- Bunch rotation angle error: Δθ
 - Proportional to V
- Geometrical reduction factor

 R_L

 $\Delta \theta = \sqrt{\beta_{crab}\beta_{IP}} \frac{\omega_{RF}}{cE/e} \Delta V$

Phase stability

- Phase error of one crab cavity: Δφ
- Transverse kick of the bunch center
 - Proportional to $\Delta \phi$
- Bunch position offset at IP: Δx
- Geometrical reduction factor
- Absolute phase error of two crab cavities has no geometrical reduction
 - Both beams have the same offset at IP
 - Because $\Delta x=0$

$$\Delta x = \sqrt{\beta_{crab}\beta_{IP}} \frac{V}{\mathrm{E/e}} \Delta \phi$$

$$R_{\Delta x} = e^{-\frac{\Delta x^2}{4\sigma_x^2}}$$

Cavity type

- Pill box
- Rectangular cavity
- Coaxial cavity

Crab cavity shape

- Pill box type
- TM110 dipole mode
 - 500MHz
 - E- and H-field
 - Horizontal kick
 - R/Q~50

Mode 2 H-Field

Frequency Phase

Maximum

507.846 MHz

6923.02 A/m

90

6923

6500

6000 -5500 -

SOM

- Same order mode
 - Unwanted polarization
 - Vertical kick
 - Same frequency

LOM

- Lowest order mode
 - Fundamental mode
- TM010 monopole mode
 - Lower frequency: 320 MHz
 - Accelerating mode
 - R/Q~100
 - Need to be heavily damped

HOM

- Higher order mode
- TM011 monopole mode
- Accelerating mode
- Should be heavily dumped

HOM, Crab cavity?

- TE111 dipole mode
- Crab cavity?
- Answer is No!
- Magnetic kick cancels electric kick
- Remember Panofsky-Wenzel theorem
 - No kick when Ez=o

We can design TE-like cavity

- TE cavity with beam pipe
 - Frequency: 500 MHz
- If the beam pipes shield the magnetic field
- We can obtain a horizontal kick
 - R/Q~40

7.93e+06 7.5e+06 7e+06 6.5e+06

> 6e+06 55e+06 45e+06 4e+06 35e+06 3e+06 25e+06 25e+06 15e+06

Rectangular cell

- Crabbing mode, TM210
- 500MHz

Mode 2 H-Field Frequency 499.967 MHz Phase 90 Maximum 5937.12 A/m

SOM

- TM120
- Vertical kicking mode
- Higher frequency than the crabbing mode
- We can separate vertical kicking mode from horizontal kick mode

Crab cavity cell for KEKB

- Required voltage: 1.4MV
- Operating temperature: 4.4K
- Squashed cell
- Crabbing mode
 - TM210-like mode
 - 509 MHz
- Coaxial coupler
 - For LOM, SOM and HOMs damping

LOM, SOM and HOMs

- Coaxial coupler propagates these modes
- TEM: No cut-off (monopole)
- TE11: fc=600 MHz (dipole)

LOM damping

- Lowest order mode
 - Fundamental mode
 - Accelerating mode
 - R/Q~100
- LOM can propagate as the TEM mode in the coaxial coupler
- Coaxial ferrite RF absorber at the end of this coupler heavily damps this mode

TEM mode in the coaxial coupler

SOM damping

- Same order mode
 - Another polarization of crabbing mode
 - Frequency above 600 MH² by squeezing cavity cell
- SOM can propagate as the dipole mode (TE11) in the coaxial coupler
 - The cut-off frequency is 600 MHz
 - Above the crabbing mode
 - Blow the SOM mode

TE mode in the coaxial coupler

HOM damping

- Coaxial coupler and coaxial ferrite absorber
 - Monopole modes
 - Dipole mode above cut-off
 - Heavily damp those modes
 - Notch filter for crabbing mode rejection
- Large beam pipe and ferrite RF absorbers
 - Monopole>900MHz
 - Dipole>750MHz

Compact crab cavities for LHC

- Required for LHC application
- Required voltage: 3MV
- Frequency: 400 MHz
- Operating temperature: 2K
- Narrow space between beam pipes
 - Nominal beam separation: 194 mm
 - Beam pipe diameter: 84 mm
- Can not use pill box type cavities
 - 800MHz cavity clears size problem but the high frequency gives non-linear kick

Quarter wave resonator

- Compact cavity
- Used for low beta beam accelerations
 - Low frequency application
 - If you make a 200MHz pill box cavity, its diameter should be 1 m.
- Maximum E field exists at the open end of an inner conductor
 - Deflection by the E-field if the beams pass along the red line
- Maximum H field exists at the short end of an inner conductor
 - Deflection by the H fields if the beams pass along the blue line
 - E fields also contributes the beam deflection
- Beam acceleration
 - 2 or 4 symmetrical configurations avoid acceleration

Four QWR configuration 4RCC

- Consists of four QWRs
- Use the E and B fields for beam deflection
- R/Q~1000
- No longitudinal acceleration
- Not FM

Γ	1		
П	П		
T		, ,	- 3

Crabbing mode

- 400 MHz
- Deflecting by E and H fields

Type

Phase

- No longitudinal acceleration
- R/Q~1000

Fundamental mode

- 360 MHz
- Accelerating mode

1st HOM

- 445 MHz
- Deflecting mode

2nd HOM

- 446 MHz
- Accelerating mode

4RCC(UK)

- 4-rod crab cavity
- ULANC
- Cavity size: 143x118 mm²
- Cavity length: 500 mm
- Peak E field: 32MV/m
- Peak B-Field 61 mT
- R/Q: 915
- FM: 370 MHz
- Not fundamental mode

Two QWR configuration DQW

- Consists two QWRs
- Mainly use the E-field for beam kick
- No longitudinal acceleration
- FM

Crabbing mode

- 400 MHz
- Deflecting mainly by the E field
- No longitudinal acceleration

HOM

- 410 MHz
 - Near the crabbing frequency
 - Well separate after longitudinal length optimization
- Accelerating mode

Longitudinal length

- To obtain larger kick voltage
 - Deflecting area has to be increased
 - Optimize longitudinal length $-\lambda/2$
- R/Q~500
- HOM: 457 MHz

Transverse length

- Increase of transverse length
 - Results in shorter inner conductor

Type

Epsilon Mu

Normal

- 160 to 100 mm
- Increasing HOM frequency
 - 575 MHz
 - Well above FM

DQW

- Double quarter wave cavity
- BNL
- Vertical kick
- FM
- Cavity size: 142x122 mm²
 - Need slim waist to provide space for the other BP
- Cavity length: 384 mm
- Peak E field: 43MV/m
- Peak B-Field 61 mT
- R/Q: 345
- HOM: 575 MHz

HOMs

- HOMs are well separate from FM
 - Above 550 MHz

HOM damping

- HOMs are extracted by couplers
 - Hook-type coupler
 - Band stop filter at 400MHz
 - L-type high pass filter above 570MHz

RFD

- RF deflector
 - Same topology
 - Evolved from the parallel bar geometry
- ODU/JLAB/SLAC
- Horizontal kick
- FM
- Cavity size: 147x147 mm²
- Cavity length: 600 mm
- Peak E field: 33MV/m
- Peak B-Field 56 mT
- R/Q: 287
- HOM: 580 MHz

Compact CC

400MHz, 3MV	RFD	4RCC	DQW
Cavity radius (mm)	147.5	143/118	142/122
Cavity length (mm)	597	500	380
Beam pipe radius (mm)	42	42	42
Peak E-field (MV/m)	33	32	47
Peak B-field (mT)	56	61	71
R/Q (Ω)	287	915	318
Nearest mode (MHz)	584	370	575

RFD and DQW were chosen for LHC CC

√/m 6.22e+06 + 5.5e+06 -5.e+06 -4.5e+06 -3.5e+06 -3.e+06 -2.5e+06 -2.e+06 -1.5e+06 -1.e+06 -5.e+05 -

Analytical solution of EM

- Consider EM fields in a rectangular cavity
- Obtain analytical solutions of the TE011 mode
- Calculate its kick voltage

Electro-magnetic fields $E_{x} = iE_{0} \frac{kk_{y}}{k_{c}^{2}} \cos k_{x} x \sin k_{y} y \sin k_{z} z$ $E_{y} = -iE_{0} \frac{kk_{x}}{k_{c}^{2}} \sin k_{x} x \cos k_{y} y \sin k_{z} z$ $E_{z} = 0$ $H_{x} = -\frac{E_{0}}{c\mu} \frac{k_{x}k_{z}}{k_{c}^{2}} \sin k_{x} x \cos k_{y} y \cos k_{z} z$ $H_{y} = -\frac{E_{0}}{c\mu} \frac{k_{y}k_{z}}{k_{c}^{2}} \cos k_{x} x \sin k_{y} y \cos k_{z} z$

X

d

$$CB_x = -E_0 \frac{k_x k_z}{k_c^2} \sin k_x x \cos k_y y \cos k_z z$$

$$CB_y = -E_0 \frac{k_y k_z}{k_c^2} \cos k_x x \sin k_y y \cos k_z z$$

$$CB_z = E_0 \cos k_x x \cos k_y y \sin k_z z$$

 $H_z = \frac{E_0}{c_{\mu}} \cos k_x x \cos k_y y \sin k_z z$

Integration of analytical solution

- Calculate kick voltage for the TE mode in a rectangular cavity
 - Electromagnetic fields are given
 - A particle passes at x=a/2, y=b/2
 - Time factor $e^{i\omega t}$

$$E_x = iE_0 \frac{kk_y}{k_c^2} \sin k_y y \sin k_z z$$
$$CB_y = -E_0 \frac{k_y k_z}{k_c^2} \sin k_y y \cos k_z z$$

$$E_x = iE_0 \frac{kk_y}{k_c^2} \sin k_z z$$
$$CB_y = -E_0 \frac{k_y k_z}{k_c^2} \cos k_z z$$

$$E_x = iE_0 \frac{kk_y}{k_c^2} \sin k_z z \quad e^{i\omega t}$$
$$CB_y = -E_0 \frac{k_y k_z}{k_c^2} \cos k_z z \quad e^{i\omega t}$$

Integration of analytical solution

- Calculate kick voltage for the TE mode in a rectangular cavity
 - Real part
 - Imaginary part

 $E_x = -E_0 \frac{kk_y}{k_c^2} \sin k_z z \sin kz$ $CB_y = -E_0 \frac{k_y k_z}{k_c^2} \cos k_z z \cos kz$

$$E_x = E_0 \frac{kk_y}{k_c^2} \sin k_z z \cos kz$$
$$CB_y = -E_0 \frac{k_y k_z}{k_c^2} \cos k_z z \sin kz$$

Integration of analytical solution

- Calculate kick voltage for the TE mode in a rectangular cavity
 - Kick voltage
 - Field integration along beam passage
 - Real part=o
 - Imaginary part=o
 - Kick voltage=o

$$|V_x| = 0$$

$$V_x = \int_0^d (E_x - cB_y) e^{ikz} \, dz$$

$$\int_0^d \sin k_z z \cos kz \, dz = -\frac{k_z}{k_c^2} (1 + \cos kd)$$
$$\int_0^d \cos k_z z \sin kz \, dz = \frac{k}{k_c^2} (1 + \cos kd)$$
$$\int_0^d \sin k_z z \sin kz \, dz = \frac{k_z}{k_c^2} \sin kd$$
$$\int_0^d \cos k_z z \cos kz \, dz = \frac{k}{k_c^2} \sin kd$$

$$ReV_{x} = Re \int_{0}^{d} (E_{x} - cB_{y})e^{ikz} dz = 0$$
$$ImV_{x} = Im \int_{0}^{d} (E_{x} - cB_{y})e^{ikz} dz = 0$$