

Connecting Controllers

Ralph Lange, ITER Organization

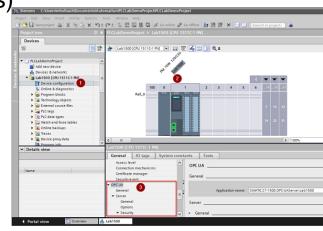
Disclaimer: The views and opinions expressed herein do not necessarily reflect those of the ITER Organization

Motivation

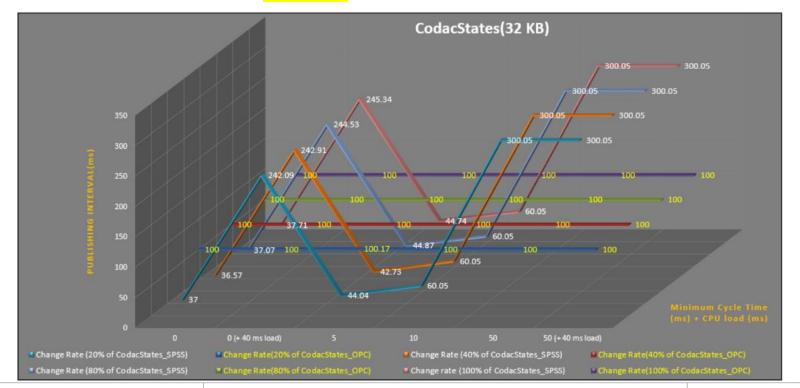
Existing EPICS interfaces to Siemens S7 PLCs:

- s7plc: TCP Data Block Transfer
 - needs programming on the PLC
 - complete data blocks only
- s7nodave: Snap7 based (S7 protocol)
 - no need for PLC side programming
 - access to the whole PLC memory
- Both work fine, but have disadvantages
 - low level configuration (byte offsets into data blocks)
 - address mismatch may have drastic consequences!
 - pretty specific/proprietary solutions

What do we want?


- Symbolic addressing
 - names, not numbers
- No PLC programming
 - keep contractors happy
- Industrial standard
 - one to connect them all
- Portability
 - at least Linux, Windows
- User-defined structures
 - for reusable PLC objects

- Subscription mechanism
 - update on change
- Server-side queues
 - handle bursts well
- Browsing support
 - find variables easily
- Security (TLS, X.509)
 - encrypt, sign, authenticate
- Remote procedure calls
 - with parameters and results


OPC UA

- Industrial standard (2006) to interface SCADA to PLCs
 - Covers data, alarms, events, historical data, remote methods
- Based on OPC Classic (Microsoft; 1996), plus
 - Portability → UA does not require DCOM/Windows like Classic
 - Safety/security (authentication, encryption)
 - Information modeling (user defined structures)
 - Remote method execution
- Gaining momentum in industrial context as universal integration standard
- Siemens S7-1500 series PLCs include an embedded OPC UA server

Performance

It all depends – mostly on the server
 early tests by TCS: S7-1518, 32kB data (integers), "empty" / 40ms cycle artificial load

Performance

- Recent test for ITER building automation integration
 - Trying to verify realistic conditions
 - 3x the estimated size (500kB data, mixed types)
 - On a mid-size S7-1516
 - 250ms sampling/publishing period
 - No performance fine-tuning
- Results:
 - Fit for this purpose
 - Best performance when using few large structures

Limitations

- Mostly found on the server end
 - S7-1500: depends on the model (S/M/L) and data organization
 - How many, how large, how often?
 - Client can "register" items to do server-side name resolution only once
 - Servers separate from PLCs introduce additional latency
- Recently found a limit in the client
 - LabView serving 600 arrays of 7500 doubles each (~36MB data)
 - -> SDK client has a limit of ~16MB for the serializer workaround: 3 subscriptions of 200 arrays each

EPICS Device Support

- Based on commercial C++ Client SDK by Unified Automation
 - 4k€ for source code and 1 year support (extend support: 20% per year)
 one developer/many products or many developers/one product
 - Binaries can be deployed/distributed royalty-free
 - Platforms: Windows and Linux
 - Evaluation bundles available
- Evaluation of client library options and Device Support prototype Bernhard Kuner (HZB/BESSY)
- ITER use cases tested by F4E (Spain) and TCS (India)
 - Against S7-1516/1518 embedded OPC UA server
 - Against WinCC-OA embedded OPC UA server

Status

- Requirements Specification v1.1: https://bit.ly/opcua-srs-11
- Design done (still no formal doc)
- Implementation nearly complete, "usable pre-release" state
 - All basic data types and arrays thereof (read/write/subscribe)
 - Supporting all applicable record types (bidirectional outputs)
 - User-defined structures (read/write/subscribe), timestamps from data
 - Server-side queues, configurable connection behavior
 - OPC UA Security (encrypt, sign, authenticate)
 lots of testing help by Roland Fleischhauer (HZB/BESSY)
- Used in production at ITER, BESSY II, ASIPP
- Under evaluation / used in developments at ESS, Fermilab, PSI, AS, LNLS, Varian Medical, UKAEA

Roadmap

- Soon:
 - Support for OPC UA methods (remote execution of PLC code)
 - Integration of (free) open62541 client library
 Dirk Zimoch (PSI) and Carsten Winkler (HZB/BESSY)
 - Integrated end-to-end test against a software server
 Ross Elliot and Karl Vestin (ESS)
- Under EPICS license
- Upstream repository and statically linked binaries on GitHub: https://github.com/ralphlange/opcua