
LUME-EPICS
EPICS Collaboration Presentation, 7/9/21
Jacqueline Garrahan, Christopher Mayes, Hugo Slepicka, 
Lipi Gupta, Auralee Edelen



Background

• LUME-EPICS and LUME-Model are members of the LUME project

• LUME project aims to wrap standard, developed electron/photon simulation codes with a 

common Python interface

• Surrogate models fall under this purview: ML surrogates trained on inputs and outputs of 

physics simulations lead to fast executing models, which may be used for tuning etc.

• NEED: Integration of surrogate models with the control system- execution on live variables, 

ability to surface outputs

C. E. Mayes, et al. (2021). Lightsource unified modeling environment 

(LUME), a start-to-end simulation ecosystem. In Proc. of IPAC (p. 

THPAB217).



3

LUME-EPICS (and LUME-model) Overview

LUME-Model

LUME-EPICS

pyepics

p4p
pyyaml pydantic

LUME-EPICS 
• EPICS server (default both 

Channel Access and pvAccess, 
but configurable)

• Callbacks on input process 
variable update

• EPICS-based bokeh widgets for 
interface development

• Templated generation of displays

LUME-Model 
• Base classes for guiding 

standardized development of 
surrogate model execution 
classes

• Variables classes with attribute 
type validation to enforce 
minimum data requirements

Python >= 3.7

Distributed on conda-forge



LUME-EPICS client
• Bokeh widget tools initialized with LUME-

Model variables
• Tiered controls: 

• Controller: Access process variables
• Monitor: Formats data
• Widgets: Development objects 4

Components

Model-specific files 
(eg. weights, architecture)

lume-epics model
• LUME-Model input variables 

accepted to evaluate method
• LUME-Model output variables 

returned

LUME-EPICS server
• Input and output variables built 

with LUME-Model
• Configurable protocol 

(pvAccess/Channel Access)

Design features:
• Separable server and client 

tools 
• Compatibility enforced by 

LUME-Model variable 
validation

• Extensible SurrogateModel 
execution class for high levels 
of customizability

• Templated class for Keras 
models

put/get

update output 
variables

Model prediction 
callback on EPICS puts

variable file 

Following 
training, 
variables must 
be saved using 
the LUME-Model 
utility

model development



5

LUME-EPICS Application Structure

in queue

out queue

Channel Access 
subprocess

pvAccess 
subprocess

synchronize

evaluate

send updated input 
variables to opposing 
protocol

caput pvA update

model execution 
thread

Cached variables during 
model execution for slow 
models

p4p

serveserve

controller 
(ca, pvA)

monitors 
(by variable type) 

widgets

server

caput

pv monitors poll()

bokeh periodic callback

update data

send new value

● Variable type 
based monitors 
for continued 
widget 
development

● Some bokeh 
widgets adapted 
for easy 
integration

● Synchronization of 
process variables 
between pvAccess 
and Channel 
Access processes

● Scalable with 
respect to number 
of variables

● Variable store for 
slow executing 
models

SERVER

CLIENT



6

Applications: Neural network surrogate models

● Packaged neural network surrogate model of the LCLS cu injector 
and served using LUME-EPICS toolkit (credit: Lipi Gupta) 

Rendered in a Jupyter Notebook:control sliders
Image plot widget

Striptools



7

Applications: Neural network surrogate models

Served bokeh dashboard with controls:

Available here

https://mybinder.org/v2/gh/jacquelinegarrahan/lume-model-server-demo/v0.2?urlpath=/proxy/5006/surrogate_model_client


8

Applications: Bmad model execution with PyTao

LCLS copper HXR beamline model dashboard rendered locally with bridge to live accelerator PVs: 

Array 
plot 
widget 

Value table 
monitoring 
live model 
inputs



9

Development roadmap

● Very much in Beta development 
● Immediate goals: 
○ User acquisition
○ Varied applications
○ Stress test of documentation, etc.



10

Learn more

● LUME: https://www.lume.science/
● Surrogate model of the cu injector (Auralee Edelen): 

https://www.youtube.com/watch?v=1f42uRNfx18
● Dockerized LCLS cu injector model, served with Binder: (here)
● LUME-Model documentation: (https://slaclab.github.io/lume-model/)
● LUME-EPICS documentation: (https://slaclab.github.io/lume-epics/)

https://www.lume.science/
https://www.youtube.com/watch?v=1f42uRNfx18
https://mybinder.org/v2/gh/jacquelinegarrahan/lume-model-server-demo/v0.2?urlpath=/proxy/5006/surrogate_model_client
https://slaclab.github.io/lume-model/
https://slaclab.github.io/lume-epics


Questions/Comments?


